Some antipsychotic drugs may be missing their mark

Jan 01, 2008

Drugs that treat depression, schizophrenia and other psychotic conditions and that target a particular protein on brain cells might not be triggering the most appropriate response in those cells, new research suggests.

The study by researchers at The Ohio State University Medical Center examined the serotonin 2A receptor, a protein on brain cells sensitive to the neurotransmitter serotonin.

This study examined the early chemical events that happen inside neurons when the 2A receptor is stimulated by serotonin and by a synthetic hallucinogenic agent that is thought to mimic serotonin.

The findings, published online in the early edition of the Proceedings of the National Academy of Sciences with an accompanying editorial, show that although both compounds combine with and activate this receptor, they trigger different chemical pathways inside the neuron.

Researchers say that the work could have important implications for the development of drugs that affect the serotonin 2A receptor, a key target in the treatment of several important mental disorders.

“This new insight into how serotonin and a hallucinogenic drug affect this serotonin receptor could lead to changes in how new drugs are screened and developed for depression, schizophrenia and other neuropsychiatric disorders,” says study leader Laura M. Bohn, an associate professor of pharmacology and psychiatry.

Currently, it is thought that when serotonin binds with the receptor, it sends a signal that activates molecules inside the cell called G proteins.

This study shows, however, that the receptor responds to serotonin by also activating a protein called beta-arrestin inside the cell. The synthetic hallucinogen, on the other hand, causes the receptor to activate only the G proteins. The hallucinogen does not seem to use beta-arrestins to cause its effects.

For this study, Bohn and her colleagues used laboratory-grown cells and a strain of mice that lacked beta-arrestin. The hallucinogen was a hallucinogenic amphetamine called DOI.

When the researchers injected normal (i.e., control) and experimental mice with DOI, both groups showed a head-twitch behavior, a characteristic response in mice to hallucinogens.

But when the mice were given high doses of serotonin, which typically also causes the head-twitch behavior, the behavior occurred in the control animals only, and not in the mice lacking beta-arrestin.

“That demonstrates that the signal for serotonin requires beta-arrestin for that biological effect,” Bohn says. “The synthetic hallucinogen, on the other hand, induces the head-twitch behavior whether beta-arrestin is present or not.

“Overall, our findings suggest that the screening of agents intended to be serotonin mimics must also determine if the agent signals through beta-arrestin,” Bohn says. “That isn’t done now.”

Source: Ohio State University

Explore further: Owls and lizards lend their ears for human hearing research

add to favorites email to friend print save as pdf

Related Stories

NASA Terra satellite spots new Tropical Cyclone 14S

1 hour ago

A tropical low pressure area designated as System 90S formed in the Southern Indian Ocean on February 21, 2015 and has been slowly organizing and consolidating. Three days later System 90S became Tropical ...

Who's your daddy? Hippo ancestry unveiled

2 hours ago

A great-great grandfather of the hippopotamus likely swam from Asia to Africa some 35 million years ago, long before the arrival of the lion, rhino, zebra and giraffe, researchers said Tuesday.

Recommended for you

Owls and lizards lend their ears for human hearing research

4 hours ago

Lizards and owls are some of the animal species that can help us to better understand hearing loss in humans, according to new research out of York University's Department of Physics & Astronomy in the Faculty of Science.

Team finds key to tuberculosis resistance

8 hours ago

The cascade of events leading to bacterial infection and the immune response is mostly understood. However, the molecular mechanisms underlying the immune response to the bacteria that causes tuberculosis ...

Mutation may cause early loss of sperm supply

9 hours ago

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation ...

No more bleeding for 'iron overload' patients?

11 hours ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.