Frances, Ivan Contribute to Hurricane Studies

Sep 16, 2004
Frances, Ivan Contribute to Hurricane Studies

Seen through the eyes of the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra satellite, the menacing clouds of Hurricanes Frances and Ivan provide a wealth of information that can help improve hurricane forecasts.

The ability of forecasters to predict the intensity and amount of rainfall associated with hurricanes still requires improvement, particularly on the 24- to 48-hour timescales vital for disaster planning. Scientists need to better understand the complex interactions that lead to hurricane intensification and dissipation, and the various physical processes that affect hurricane intensity and rainfall distributions. Because uncertainties in representing hurricane cloud processes still exist, it is vital that model findings be evaluated against actual hurricane observations whenever possible. Two-dimensional maps of cloud heights such as those provided by the Multi-angle Imaging SpectroRadiometer offer an unprecedented opportunity for comparing simulated cloud fields against actual hurricane observations.

Image: NASA's Multi-angle Imaging SpectroRadiometer captured these images and cloud-top height retrievals of Hurricane Frances on September 4, 2004, and Hurricane Ivan on September 5th.

The newly released images of Hurricanes Frances and Ivan were acquired Sept. 4 and Sept. 5, 2004, respectively, when Frances' eye sat just off the coast of eastern Florida and Ivan was heading toward the central and western Caribbean. They are available at: http: //photojournal.jpl.nasa.gov/catalog/PIA04367.

The left-hand panel in each image pair is a natural-color view from the instrument's nadir camera. The right-hand panels are computer-generated cloud-top height retrievals produced by comparing the features of images acquired at different view angles. When these images were acquired, clouds within Frances and Ivan had attained altitudes of 15 and 16 kilometers (9.3 and 9.9 miles) above sea level, respectively.

The instrument is one of several Earth-observing experiments aboard Terra, launched in December 1999. The instrument acquires images of Earth at nine angles simultaneously, using nine separate cameras pointed forward, downward and backward along its flight path. It observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. It was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. JPL is a division of the California Institute of Technology in Pasadena.

More information about the Multi-angle Imaging SpectroRadiometer is available at: http: //www-misr.jpl.nasa.gov/.

Source: JPL, NASA

Explore further: Researchers discover low-grade nonwoven cotton picks up 50 times own weight of oil

add to favorites email to friend print save as pdf

Related Stories

Cooler waters help diminish Isaac's punch

Aug 29, 2012

(Phys.org)—Seven years after the powerful Category 3 Hurricane Katrina caused widespread devastation along the Gulf Coast, a Category 1 Hurricane Isaac, with maximum sustained winds of 80 miles per hour ...

UF Researchers Take Pulse Of Hurricane Dennis

Jul 12, 2005

University of Florida researchers working on at least two separate projects helped gauge Hurricane Dennis' fury Saturday and Sunday. In the first, a team of research engineers from UF and two other Florida uni ...

NASA Scans Ivan Inside for 3D Image

Sep 16, 2004

On the morning of September 15, 2004, NASA's Tropical Rainfall Measuring Mission (TRMM) satellite captured a 3-D look inside Hurricane Ivan, still a Category 4 storm. This unique look at Ivan shows the struct ...

NASA Watching Hurricane Ivan

Sep 15, 2004

Weather forecasts indicate several NASA centers and facilities could be impacted by Hurricane Ivan once it makes landfall, and preparations are under way to secure important space flight hardware against da ...

Recommended for you

Rosetta measures comet's temperature

13 hours ago

(Phys.org) —ESA's Rosetta spacecraft has made its first temperature measurements of its target comet, finding that it is too hot to be covered in ice and must instead have a dark, dusty crust.

How Rosetta arrives at a comet

15 hours ago

After travelling nearly 6.4 billion kilometres through the Solar System, ESA's Rosetta is closing in on its target. But how does a spacecraft actually arrive at a comet?

Lunar occultation of Saturn

15 hours ago

On the night of Monday August 4, mainland Australia will see Saturn disappear behind the moon. It's the third time this year that the moon and Saturn will perfectly line up, as viewed from our part of the ...

User comments : 0