Record-breaking detector may aid nuclear inspections

Mar 14, 2006
Record-breaking detector may aid nuclear inspections
The data plots above show detection of gamma rays with specific energies. Arrows point to energies identified with the new detector that are difficult to detect in the red plot made with a conventional detector. Image credit: National Institute of Standards and Technology, National Nuclear Security Agency, Los Alamos National Laboratory

Scientists at the Commerce Department's National Institute of Standards and Technology (NIST) have designed and demonstrated the world's most accurate gamma ray detector, which is expected to be useful eventually in verifying inventories of nuclear materials and detecting radioactive contamination in the environment.

The tiny prototype detector, described today at the American Physical Society national meeting in Baltimore, can pinpoint gamma ray emissions signatures of specific atoms with 10 times the precision of the best conventional sensors used to examine stockpiles of nuclear materials. The NIST tests, performed with different forms of plutonium at Los Alamos National Laboratory, also show the prototype greatly clarifies the complex X-ray and gamma-ray emissions profile of plutonium.

Emissions from radioactive materials such as uranium or plutonium provide unique signatures that, if accurately measured, can indicate the age and enrichment of the material and sometimes its intended purpose or origin.

Record-breaking detector may aid nuclear inspections
Silicon chip built by NIST researchers with 16 tiny gamma ray detectors that may help nuclear inspectors improve analysis of plutonium and other radioactive materials. Each detector is one millimeter square. Image credit: National Institute of Standards and Technology

The 1-square-millimeter prototype collects only a small amount of radiation, but NIST and Los Alamos researchers are collaborating to make a 100-sensor array that could be deployed in the field, perhaps mounted on a cart or in a vehicle.

"The system isn't planned as a primary detection tool," says NIST physicist Joel Ullom. "Rather, it is intended for detailed analysis of material flagged by other detectors that have larger collection area but less measurement accuracy." An array could be used by inspectors to determine, for example, whether plutonium is of a dangerous variety, whether nuclear fuel was made for energy reactors or weapons, or whether what appears to be radium found naturally in the environment is actually explosive uranium.

"People at Los Alamos are very excited about this work," says Michael Rabin, a former NIST post-doc who now leads a collaborating team at Los Alamos. The Los Alamos National Laboratory operates and improves the capability to handle nuclear materials and sends scientists to participate in United Nations nuclear inspection teams.

An array of the new sensors might give inspectors new capabilities, such as enabling them to determine the plutonium content of spent reactor fuel without handling the fuel or receiving reliable information from the reactor's operators. Plutonium content can indicate whether a reactor is being used to produce weapons or electrical power.

The gamma ray detector is a variation on superconducting "transition edge" sensor technology pioneered at NIST laboratories in Boulder, Colo., for analysis of X-rays (for astronomy and semiconductor analysis applications) and infrared light (for astronomy and quantum communications). The cryogenic sensors absorb individual photons (the smallest particles of light) and measure the energy based on the resulting rise in temperature. The temperature is measured with a bilayer of normal metal (copper) and superconducting metal (molybdenum) that changes its resistance to electricity in response to the heat from the radiation.

To stop gamma rays, which have higher energy than infrared light and X-rays, the sensors need to be topped with an absorbent material. A layer of tin, 0.25 mm thick, is glued on top of each sensor to stop the gamma rays. The radiation is converted to heat, or vibrations in the lattice of tin atoms, and the heat drains into the sensor, where the temperature change is measured. NIST researchers have developed microfabrication techniques to attach absorbers across an array.

Researchers expect the 100-detector array to measure 1 square centimeter in size. The NIST team has already developed multiplexed readout systems to measure the signals from large sensor arrays, and recent advances in commercial refrigeration technology are expected to allow pushbutton operation of the system without liquid cryogens.

Source: NIST

Explore further: Cool calculations for cold atoms: New theory of universal three-body encounters

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New method for non-invasive prostate cancer screening

9 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

10 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

11 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

15 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0