Scientists Find Good News About Methane Bubbling Up From the Ocean Floor Near Santa Barbara

Dec 20, 2007

Methane, a potent greenhouse gas, is emitted in great quantities as bubbles from seeps on the ocean floor near Santa Barbara. About half of these bubbles dissolve into the ocean, but the fate of this dissolved methane remains uncertain. Researchers at the University of California, Santa Barbara have discovered that only one percent of this dissolved methane escapes into the air –– good news for the Earth's atmosphere.

Coal Oil Point (COP), one of the world's largest and best studied seep regions, is located along the northern margin of the Santa Barbara Channel. Thousands of seep fields exist in the ocean bottom around the world, according to David Valentine, associate professor of Earth Science at UC Santa Barbara. Valentine along with other members of UCSB's seeps group studied the plume of methane bubbles that flows from the seeps at COP.

Their results will soon be published as the cover story in Volume 34 of Geophysical Research Letters. This research effort is the first time that the gas that dissolves and moves away from COP, the plume, has been studied.

The amount of methane release from COP seeps is around two million cubic feet per day, according to Valentine. About 100 barrels of oil oozes out of this area as well. Methane warms the Earth 23 times more than carbon dioxide when averaged over a century. Thus the fate of the methane bubbles from the seeps is an important environmental question.

"We found that the ocean has an amazing capacity to take up methane that is released into it –– even when it is released into shallow water," said Valentine. "Huge amounts of gas are coming up here, creating a giant gas plume. Until now, no one had measured the gas that dissolves and moves away, the plume."

Valentine hypothesized that the methane is oxidized by microbial activity in the ocean, thus relieving the ocean of the methane "burden."

To arrive at this hypothesis, Valentine and lead author Susan Mau, a postdoctoral fellow in Valentine's lab, tracked the plume down current from the seeps at 79 surface stations in a 280 square kilometer study area. They found that the methane plume spread over 70 square kilometers.

By boat, the authors sampled the water on a monthly basis. They found variable methane concentrations that corresponded with changes in surface currents. They also found that more wind releases more methane into the atmosphere. Overall, they discovered that about one percent of the dissolved methane escapes into the atmosphere in the area they studied, a long-term average. This lead the authors to hypothesize that most of the methane is transported below the ocean's surface –– away from the seep area. Then it is oxidized by microbial activity.

To back up their findings of their surface sampling of the water, the scientists used a mass spectrometer hauled behind the boat as well. This equipment allowed for very high-resolution chemical information about the methane. This effort showed no significant difference in the numbers.

"We showed that the currents control the fate of the gas and supply it to bacteria in a way that allows them to destroy the methane," said Valentine.

Valentine said that while the seeps at COP are among the largest in the world, they can be found just about anywhere.

Source: University of California, Santa Barbara

Explore further: NASA provides double vision on Typhoon Matmo

add to favorites email to friend print save as pdf

Related Stories

Probing the depths of the methane world

May 02, 2014

In 2011, Jennifer Glass joined a scientific cruise to study a methane seep off of Oregon's coast. In these cold, dark depths, microbes buried in the sediment feast on methane that seeps through the seafloor.

Methane hydrates and global warming

Jan 02, 2014

Methane hydrates are fragile. At the sea floor the ice-like solid fuel composed of water and methane is only stable at high pressure and low temperature. In some areas, for instance in the North Atlantic ...

Recommended for you

Oso disaster had its roots in earlier landslides

1 hour ago

The disastrous March 22 landslide that killed 43 people in the rural Washington state community of Oso involved the "remobilization" of a 2006 landslide on the same hillside, a new federally sponsored geological study concludes.

Study finds missing piece of biogeochemical puzzle in aquifer

1 hour ago

A study published in Scienceby researchers from the U.S. Department of Energy's Argonne National Laboratory and co-authored by Georgia Tech may dramatically shift our understanding of the complex dance of microbes and minerals ...

Hurricane Imaging Radiometer prepared for deployment

2 hours ago

The Hurricane Imaging Radiometer, known as HIRAD, will fly aboard one of two unmanned Global Hawk aircraft during NASA's Hurricane Severe Storm Sentinel or HS3 mission from Wallops beginning August 26 through ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

quantum_flux
1.5 / 5 (2) Dec 20, 2007
They should capture the methane in solution and then treat it with heavy doses of chlorine to the breakpoint, and then capture the hydrogen gas that bubbles off.... for free hydrogen at the expense of recoverable chlorine residuals and dissolved carbon dioxide. or is my chemistry off!?
out7x
3 / 5 (2) Dec 21, 2007
A good reason to drill off SantaBarbara.