'Jekyll and Hyde' bacteria offer pest control clue

Dec 19, 2007

New research at York has revealed so-called ‘Jekyll and Hyde’ bacteria, suggesting a novel way to control insect pests without using insecticides.

Researchers at the University of York studied the relationship between plant-dwelling insects and the bacteria that live in them – and discovered an unexpected interaction.

Plants are not ‘easy meat’ for insects. In fact, many insects thrive on plant food only because of the presence of a third party: symbiotic bacteria that live in the insects and provide extra nutrients.

While studying interactions between black bean aphids and their associated bacteria, York researchers discovered an intriguing new category of organism that they dubbed ‘Jekyll and Hyde’ bacteria.

Black bean aphids can live on a number of different plant species. In most situations, their internal bacteria are harmless or even beneficial – this is their ‘Jekyll’ side.

But on certain plants, the relationship between insect and bacteria changes with the microscopic organisms exhibiting a disruptive ‘Hyde’ side. The insects grow and reproduce very slowly, while the bacteria themselves proliferate to very high densities in a short time – almost as if the bacteria were ‘betraying’ their hosts.

Further experiments have suggested that the factor triggering this strange change is the composition of nutrients in the plants where the creatures live.

The results, published in the Proceedings of the Royal Society B, may point the way to new methods to control aphids and other insect pests.

Professor Angela Douglas, of the University’s Department of Biology, said:

“We now have the basis to explore precisely how these insect pests control their bacteria – and perhaps to develop ways to make the bacteria ‘turn nasty’ on the insects. These findings offer exciting new opportunities to control aphids and other pests without using insecticides.”

Source: University of York

Explore further: Researchers identify new mechanism to aid cells under stress

add to favorites email to friend print save as pdf

Related Stories

Bacteria coordinate activities with chemical 'language'

Jan 15, 2015

Ludwig Maximilian University of Munich researchers have discovered a previously unknown chemical language used by many bacterial species to coordinate their activities, and show in a model organism that such ...

A renewable bioplastic made from squid proteins

Dec 18, 2014

In the central Northern Pacific is an area that may be the size of Texas called the Great Pacific Garbage Patch. Made up of tons of floating plastic debris, the patch is killing seabirds and poisoning marine ...

Questioning GMOs

Nov 07, 2014

Are genetically engineered foods safe? Truth is, we probably don't know. "The scientific debate is not resolved, even though many people are claiming it is," says Sheldon Krimsky, the Lenore Stern Professor ...

Recommended for you

Researchers identify new mechanism to aid cells under stress

3 hours ago

A team of biologists from NYU and Harvard has identified new details in a cellular mechanism that serves as a defense against stress. The findings potentially offer insights into tumor progression and neurodegenerative diseases, ...

Researchers image and measure tubulin transport in cilia

4 hours ago

Defective cilia can lead to a host of diseases and conditions in the human body—from rare, inherited bone malformations to blindness, male infertility, kidney disease and obesity. Scientists knew that somehow ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.