Cold feeling traced to source

Dec 18, 2007

For the first time, neuroscientists have visualized cold fibers – strands reaching from sensory neurons near the spinal cord to nerve endings in the skin tuned to sense different types of cold. The study and pictures appear in the Dec. 19 issue of the Journal of Neuroscience.

Surprisingly, given the highly diversified sensory system and the range of sensations studied – harmless cool, stinging cold, soothing coolness – the fibers lead back to one place in the neuron: a protein known as TRPM8 that relays a cold signal up the spinal cord to the brain.

The idea of a cold fiber is simple. When the dentist chills a tooth with compressed air, the fiber carries a signal from nerve ending to sensory neuron. The neuron relays the signal to the brain, and the patient shivers.

In practice, said USC study leader David McKemy, “no one’s actually seen a specific cold fiber.”

McKemy’s study solved that problem by genetically engineering mice in which neurons that express TRPM8 molecules also included a fluorescent tracer that lights up the fibers.

McKemy’s study provides the first visualization of cold-sensing, TRPM8-expressing neurons. Previous studies had shown that mice lacking TRPM8 lose much of their cold sensitivity (video available at www.nature.com/nature/journal/… nfo/nature05910.html ).

Humans and other mammals appear to share the same mechanism, McKemy said.

By following the fluorescent cold fibers, the researchers added to the evidence that TRPM8 is involved in several types of cold sensing. In teeth, the distinct nerve endings involved in the initial shooting pain and the subsequent dull ache both lead back to TRPM8, McKemy said.

Sensations such as the pleasant coolness of menthol, the sting of ice on the skin, the heightened cold sensitivity after an injury and the soothing cool of some pain relief lotions also involve TRPM8, he added.

Removing TRPM8 does not eliminate all sensitivity to all types of cold. Extreme cold not only activates TRPM8 but also burns the skin, turning on many other warning circuits.

“Cold is going to be activating these cool and cold cells that likely are the ones we’re studying in this paper as well as activating these neurons that are probably responding to tissue damage,” McKemy said.

“So your higher cognitive centers are processing a cool signal and a pain signal, and so we get cold pain.

“As with anything with biology, it’s not as simple as you would think.”

McKemy was the lead author of a landmark 2002 study, published in Nature, that first identified the cold-sensing role of TRPM8.

One larger goal of such research is to understand the molecular mechanisms of sensation, in the hope of developing better drugs for relief of chronic pain states, such as arthritis and inflammation.

“If we understand the basic nuts and bolts of the molecules and neurons and how they detect pain normally,” McKemy said, “then perhaps we can figure out why we detect pain when we shouldn’t.”

Source: University of Southern California

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Driverless shuttle will be on the move in UK

Feb 22, 2015

(Phys.org) —"Autonomous public transport" is on the minds of planners who envision self-driving vehicles that would cross over short distances, suited for airport transport, industrial sites, theme parks ...

Korean tech start-ups offer life beyond Samsung

Feb 23, 2015

As an engineering major at Seoul's Yonsei University, Yoon Ja-Young was perfectly poised to follow the secure, lucrative and socially prized career path long-favoured by South Korea's elite graduates.

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.