Intensive training post-spinal cord injury can stimulate repair in brain and spinal cord

Dec 18, 2007

Intensive rehabilitation training for patients with spinal cord injuries can stimulate new branches growing from severed nerve fibers, alongside compensatory changes in the brain, say Canadian researchers. Most importantly, it could lead to restoring hand function and the ability to walk.

A study recently published in the journal Brain highlights the remarkable benefits of rehabilitation training after a cervical spinal cord injury—something that has been overshadowed in recent years by the promise of cutting-edge stem cell research.

“It may be that it is neglected because it seems so simple,” says the study’s senior author Karim Fouad of the University of Alberta in Edmonton.

“Some people take very desperate steps when they are paraplegic. They go to other countries to receive treatments like stem cell transplantations, and most of these approaches are not really controlled trials. They undergo a lot of risk and spend a lot of money, when in fact they could see more benefits with fewer risks from sustained, intensive rehab training.”

The study led by Fouad shows that when animal models with incomplete spinal cord injuries received intensive training over many weeks on a reaching task which they were able to do before their injuries, they performed significantly better than their untrained counterparts. In fact, the animals trained post-injury nearly doubled the success rate achieved by the untrained animals.

“Research has found that after incomplete spinal cord injury, there is a moderate amount of recovery based on a rewiring process, a response of the nervous system to the injury,” says Fouad. “This is a naturally occurring process. What we found is that intensive rehabilitation training actually promotes this naturally occurring process. It actually enables changes in the brain and spinal cord similar to a repair process.”

“The way the animals succeeded in the grasping task post-injury was not the way they did it before. They compensated. They adapted. They developed a new way to do it. What people with these injuries can take from this is that you don’t have to do things the way you used to do them before— what matters is that you attempt, practice hard and find your own adaptive strategy.”

Source: University of Alberta

Explore further: Paralyzed man recovers some function following transplantation of OECs and nerve bridge

add to favorites email to friend print save as pdf

Related Stories

MasterCard, Zwipe announce fingerprint-sensor card

11 hours ago

On Friday, MasterCard and Oslo, Norway-based Zwipe announced the launch of a contactless payment card featuring an integrated fingerprint sensor. Say goodbye to PINs. This card, they said, is the world's ...

Plastic nanoparticles also harm freshwater organisms

12 hours ago

Organisms can be negatively affected by plastic nanoparticles, not just in the seas and oceans but in freshwater bodies too. These particles slow the growth of algae, cause deformities in water fleas and impede communication ...

Atomic trigger shatters mystery of how glass deforms

12 hours ago

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

US company sells out of Ebola toys

21 hours ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

Recommended for you

Team untangles the biological effects of blue light

7 hours ago

Blue light can both set the mood and set in motion important biological responses. Researchers at the University of Pennsylvania's School of Medicine and School of Arts and Sciences have teased apart the ...

Mouse model provides new insight in to preeclampsia

8 hours ago

Worldwide, preeclampsia is a leading cause of maternal deaths and preterm births. This serious pregnancy complication results in extremely high blood pressure and organ damage. The onset of preeclampsia is associated with ...

Scientists unravel the mystery of a rare sweating disorder

8 hours ago

An international research team discovered that mutation of a single gene blocks sweat production, a dangerous condition due to an increased risk of hyperthermia, also known as heatstroke. The gene, ITPR2, controls a basic ...

User comments : 0