Protons - Everything Revolves Around Spin

Dec 17, 2007
Protons - Everything Revolves Around Spin
Enormous particle accelerators and their detectors (shown is the ATLAS detector in process of being constructed) help to understand the forces that keep our world together. Credit: Steven Bass

Current understanding of the spin structure of protons has been summarised in a single book for the first time. The book examines attempts to solve one of the greatest puzzles of physics. Models and experiments to date have been unable to properly explain a fundamental property of protons spin.

Published by Dr. Steven Bass as part of an Austrian Science Fund FWF project, the book summarises over 1,000 publications and the results of a global research programme on this phenomenon.

Many particles rotate around their own axis like spinning tops. However, unlike spinning tops, this spin has a fundamental influence on the properties of the particle - and therefore on our world. Quantum physical interactions mean that spin is responsible for the magnetic moment of protons, and therefore also the stability of the universe. It is a truly fundamental force. This makes it all the more surprising that experiments have so far failed to identify the origin of 30 percent of proton spin.

Dr. Steven Bass, from the Institute of Theoretical Physics at the University of Innsbruck and a researcher at CERN (European Organisation of Nuclear Research), has summarised the current understanding of this discrepancy in a new book. Besides referring to 1,000 publications on the theory of spin, he also presents the results of a worldwide research programme that was carried out in the particle accelerators of CERN, DESY (German Electron Synchrotron), BNL (Brookhaven National Laboratory), JLab (Jefferson Laboratory) and SLAC (Stanford Linear Accelerator Centre).

Dr. Bass on the missing spin of protons: "Protons are combinations of more basic entities called quarks and gluons. Each proton is made up of three quarks that are bound together by the gluons. Just like the protons, the quarks and gluons themselves also spin. The spin of the proton is therefore generated by the spin of its constituent parts. For example, current models state that 60 percent of the spin of a proton must originate from the spin of the quarks. The remaining 40 percent would therefore come from other types of movement produced by the quarks within the proton. However, experiments involving some of the most advanced particle accelerators in the world indicate that a maximum of 30 percent of proton spin originates from quark spin. So where does the rest come from?"

The aforementioned global research programme was initiated and a whole range of calculations were published in an attempt to find an answer to this question. These efforts are now beginning to bear fruit and it is these results that Dr. Bass has compiled in his book.

The results initially seemed to indicate that the apparent discrepancy was the result of inaccurate interpretation, in other words, that in reality there is no discrepancy. The theory behind this hypothesis is that the spin of the gluons - the particles responsible for binding together quarks - screens quark spin in proportion to the gluon polarisation. This would influence any attempts to measure quark spin and distort calculations. But it was not long before other experiments produced data that contradicted this theory. This data shows that gluon polarisation is not strong enough to account for the "missing" 30 percent of quark spin. However, calculations from even more accurate measurements are expected soon and will deliver new findings - or disprove existing ones.

As a result, we need to constantly re-examine our current understanding of what holds together protons - and for that matter the universe. Dr. Bass, who also heads up an FWF project on this subject, therefore believes that his book has been published at precisely the right time: "The results of new and ever more accurate measurements need to be analysed in the light of the latest understanding. I hope that this book goes some way towards helping achieve this."

Reference: The Spin Structure of the Proton. By Steven D Bass, Publisher World Scientific, ISBN 978-981-270-9479.

Source: Austrian Science Fund (FWF)

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

Humble neutron is valuable tool in geology

Mar 16, 2015

With the ability to analyse the properties of the Earth's internal components to the atomic scale in conditions only found kilometres below our feet, recent studies have allowed geoscientists to study our ...

Researchers test radiation-resistant spintronic material

Feb 17, 2015

A team of researchers from the University of Michigan and Western Michigan University is exploring new materials that could yield higher computational speeds and lower power consumption, even in harsh environments.

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1 / 5 (1) Dec 18, 2007
Spin is a quantum state. Quark-gluon interactions are the strong force. How are they related?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.