UMC Announces a Device Technique that Enhances Silicon-on-Insulator (SOI) Transistor Performance

May 26, 2004

HSINCHU, Taiwan, May 26, 2004 -- UMC, a world leading semiconductor foundry, today announced the discovery of a new engineering technique that enhances Silicon-on-Insulator (SOI) transistor performance. The Direct-Tunneling induced Floating-Body Potential, which is a manipulation technique that magnifies a certain device physics behavior, provides PMOS transistors a 30 percent increase in drive current compared to conventional body-grounded SOI transistors. Unlike other performance enhancing techniques such as strained silicon devices or multi-gate transistors, this new technique suffers no additional process complexity, which translates into a better position in terms of manufacturing cost and yield.

"To further increase our competitiveness, UMC has always researched a variety of possible enabling technologies simultaneously," said S. C. Chien, senior director of UMC's Central Research and Development. "Our discovery on Direct-Tunneling induced Floating-Body Potential for Silicon-on-Insulator transistors not only provides the performance enhancement needed for UMC's future technologies, but also retains good manufacturability, which is a crucial element for a successful semiconductor foundry."

Direct Tunneling is a quantum mechanical behavior where electrons or holes jump through a thin insulator. This usually undesirable behavior can be manipulated with simple design layout structures. SOI devices could take advantage of this behavior to circumvent the Floating-Body Effect, an uncontrollable parasitic effect. With this extra control, the transistor behaves much more predictably in addition to the performance gain.

A series of publications discussing this technique have been published in the April and May editions of IEEE Electron Device Letters and IEEE Transactions on Electron Devices.

About Silicon-on-Insulator (SOI)
Silicon-on-Insulator is an approach in which transistors are built on top of an insulating material instead of the conventional silicon crystal substrate. By replacing the silicon substrate with an insulator substrate, extra capacitive load produced at the interface between the substrate and the transistor active areas is eliminated. In effect, SOI transistors can switch faster with lower power consumption, compared to conventional bulk silicon transistors. However, the body of the transistor is now sitting on an insulator and therefore electrically isolated from the rest of the circuit. The isolated body leads to the floating body effect, which creates an uncontrollable mode that makes transistors behave erratically in certain circumstances.

Full press-release on www.umc.com

Explore further: Simplicity is key to co-operative robots

add to favorites email to friend print save as pdf

Related Stories

New 'switch' could power quantum computing

Apr 09, 2014

Using a laser to place individual rubidium atoms near the surface of a lattice of light, scientists at MIT and Harvard University have developed a new method for connecting particles—one that could help ...

Scalable CVD process for making 2-D molybdenum diselenide

Apr 08, 2014

(Phys.org) —Nanoengineering researchers at Rice University and Nanyang Technological University in Singapore have unveiled a potentially scalable method for making one-atom-thick layers of molybdenum diselenide—a ...

Carbon nanotubes find real world applications

Mar 31, 2014

No one disputes that carbon nanotubes have the potential to be a wonder technology: their properties include a thermal conductivity higher than diamond, greater mechanical strength than steel – orders of ...

Converting waste heat into electricity

Mar 25, 2014

Bruce White worked with semiconductors and transistors at Motorola and Texas Instruments. But when he left industry for a position on Binghamton University's faculty, the materials scientist decided to take ...

Recommended for you

Hand out money with my mobile? I think I'm ready

24 minutes ago

A service is soon to launch in the UK that will enable us to transfer money to other people using just their name and mobile number. Paym is being hailed as a revolution in banking because you can pay peopl ...

Tiny power plants hold promise for nuclear energy

32 minutes ago

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Obama launches measures to support solar energy in US

1 hour ago

The White House Thursday announced a series of measures aimed at increasing solar energy production in the United States, particularly by encouraging the installation of solar panels in public spaces.

Tailored approach key to cookstove uptake

1 hour ago

Worldwide, programs aiming to give safe, efficient cooking stoves to people in developing countries haven't had complete success—and local research has looked into why.

User comments : 0

More news stories

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Hand out money with my mobile? I think I'm ready

A service is soon to launch in the UK that will enable us to transfer money to other people using just their name and mobile number. Paym is being hailed as a revolution in banking because you can pay peopl ...