Quantum Communication Over Flawed Networks may be Possible

Dec 14, 2007 feature

If successfully implemented, quantum communication could be an extremely secure method of transmitting information – but there are major roadblocks to pass. Recently, physicists suggested a way, at least in theory, to overcome perhaps the biggest of these problems: making quantum communication possible over “real life” networks with serious imperfections, such as leakage, and across distances greater than 10 kilometers.

All of the issues slowing the progress of quantum communication have to do with the foundation of quantum communication, a phenomenon called “quantum entanglement.” Quantum entanglement occurs when two quantum-information carriers, such as photons, are aware of each other’s existence and know each other's particular quantum state despite never having previously interacted and being physically separate. It is one peculiar effect of the strange, mysterious world of quantum physics.

Currently, photon channels, such as fiber-optic cables, are the only realistic choice for quantum communication. However, creating high-fidelity quantum entanglement between photons at two distant locations becomes exponentially more difficult as the distance between them increases, seriously impeding the real-life implementation of quantum communication. Extending the range to practical distances remains a challenge on many levels.

But, as they discuss in a recent paper in Physical Review A, physicists from Nanjing University in China propose a quantum-communications network in which producing entanglement over a long distance is conceptually possible.

The basic network they suggest is made of a sending node and receiving node coupled to a quantum channel (such as a fiber optic cable) that contains an optical circulator, a fiber-optic component that allows signals to simultaneously travel in both directions down a fiber.

Inside the sending and receiving nodes are a quantum dot (typically a very tiny cluster of atoms that behaves as a single atom in the quantum sense) in a microcavity. Each dot can be in one of three quantum states: a ground state, an excited state, and an intermediate state. Each state is a qubit, or quantum bit, the most basic piece of quantum information, like how a “0” or “1” form a bit of computer storage.

These qubits are stationary. The scheme also includes a “flying qubit,” a mobile piece of quantum information, that moves between them.

The flying qubit in this case is a pulse of light with a specific shape. The pulse acts as something like a middle man, initially being entangled with the sending qubit but swapping its entanglement with the receiving qubit, thus leaving the sending and receiving qubits entangled.

This scheme, when its parameters are properly and meticulously tweaked, avoids some of the issues that arise in other methods that have been proposed and, the scientists say, can yield fidelities that are almost perfect.

Citation: Physical Review A 76, 052302 (2007)

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Could 'Jedi Putter' be the force golfers need?

add to favorites email to friend print save as pdf

Related Stories

Quantum computing machine under scrutiny

Mar 18, 2014

A new and innovative computing machine is currently attracting a great deal of attention in specialist circles. A team under the leadership of Matthias Troyer, a professor at ETH Zurich, has now confirmed ...

D-Wave chip passes rigorous tests

Mar 05, 2014

With cutting-edge technology, sometimes the first step scientists face is just making sure it actually works as intended.

NSA pursues quantum technology

Jan 31, 2014

In this month's issue of Physics World, Jon Cartwright explains how the revelation that the US National Security Agency (NSA) is developing quantum computers has renewed interest and sparked debate on just how far ahead ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

DKA
3 / 5 (2) Dec 15, 2007
The book refers to gravitron. Still, most scientists think they exist. I am not sure if the author says that they might not exist, if he does not, I wonder about the quality of it though. I think that gravitrons do not exist and that we will never find any. I understand Gravity has the everyday experience of space curvature. The more it is curved, the more things around it are bound to it, and it feels like gravity, without particule. We are compressed, we are not attracted by particules.
Park City, Japan, 2007

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.