Quantum Communication Over Flawed Networks may be Possible

Dec 14, 2007 feature

If successfully implemented, quantum communication could be an extremely secure method of transmitting information – but there are major roadblocks to pass. Recently, physicists suggested a way, at least in theory, to overcome perhaps the biggest of these problems: making quantum communication possible over “real life” networks with serious imperfections, such as leakage, and across distances greater than 10 kilometers.

All of the issues slowing the progress of quantum communication have to do with the foundation of quantum communication, a phenomenon called “quantum entanglement.” Quantum entanglement occurs when two quantum-information carriers, such as photons, are aware of each other’s existence and know each other's particular quantum state despite never having previously interacted and being physically separate. It is one peculiar effect of the strange, mysterious world of quantum physics.

Currently, photon channels, such as fiber-optic cables, are the only realistic choice for quantum communication. However, creating high-fidelity quantum entanglement between photons at two distant locations becomes exponentially more difficult as the distance between them increases, seriously impeding the real-life implementation of quantum communication. Extending the range to practical distances remains a challenge on many levels.

But, as they discuss in a recent paper in Physical Review A, physicists from Nanjing University in China propose a quantum-communications network in which producing entanglement over a long distance is conceptually possible.

The basic network they suggest is made of a sending node and receiving node coupled to a quantum channel (such as a fiber optic cable) that contains an optical circulator, a fiber-optic component that allows signals to simultaneously travel in both directions down a fiber.

Inside the sending and receiving nodes are a quantum dot (typically a very tiny cluster of atoms that behaves as a single atom in the quantum sense) in a microcavity. Each dot can be in one of three quantum states: a ground state, an excited state, and an intermediate state. Each state is a qubit, or quantum bit, the most basic piece of quantum information, like how a “0” or “1” form a bit of computer storage.

These qubits are stationary. The scheme also includes a “flying qubit,” a mobile piece of quantum information, that moves between them.

The flying qubit in this case is a pulse of light with a specific shape. The pulse acts as something like a middle man, initially being entangled with the sending qubit but swapping its entanglement with the receiving qubit, thus leaving the sending and receiving qubits entangled.

This scheme, when its parameters are properly and meticulously tweaked, avoids some of the issues that arise in other methods that have been proposed and, the scientists say, can yield fidelities that are almost perfect.

Citation: Physical Review A 76, 052302 (2007)

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Upside down and inside out

Related Stories

Quantum Criticality in life's proteins (Update)

Apr 15, 2015

(Phys.org)—Stuart Kauffman, from the University of Calgary, and several of his colleagues have recently published a paper on the Arxiv server titled 'Quantum Criticality at the Origins of Life'. The id ...

Quantum teleportation on a chip

Apr 01, 2015

The core circuits of quantum teleportation, which generate and detect quantum entanglement, have been successfully integrated into a photonic chip by an international team of scientists from the universities ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Recommended for you

Thinner capsules yield faster implosions

2 hours ago

In National Ignition Facility (NIF) inertial confinement fusion (ICF) experiments, the fusion fuel implodes at a high speed in reaction to the rapid ablation, or blow-off, of the outer layers of the target ...

Direct visualization of magnetoelectric domains

5 hours ago

A novel microscopy technique called magnetoelectric force microscopy (MeFM) was developed to detect the local cross-coupling between magnetic and electric dipoles. Combined experimental observation and theoretical ...

Upside down and inside out

6 hours ago

Researchers have captured the first 3D video of a living algal embryo turning itself inside out, from a sphere to a mushroom shape and back again. The results could help unravel the mechanical processes at ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (2) Dec 15, 2007
The book refers to gravitron. Still, most scientists think they exist. I am not sure if the author says that they might not exist, if he does not, I wonder about the quality of it though. I think that gravitrons do not exist and that we will never find any. I understand Gravity has the everyday experience of space curvature. The more it is curved, the more things around it are bound to it, and it feels like gravity, without particule. We are compressed, we are not attracted by particules.
Park City, Japan, 2007

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.