Optical fibers and a theory of things that go bump in the light

Sep 15, 2004

University of California scientists working at Los Alamos National Laboratory have developed a theory describing light pulse dynamics in optical fibers that explains how an interplay of noise, line imperfections and pulse collisions lead to the deterioration of information in optical fiber lines. The theory will help to enhance the performance necessary for high-speed optical communication systems like video on demand and ultra-broadband Internet, and the research has helped establish a new field of inquiry -- the statistical physics of optical communications.

The theory, developed by Los Alamos scientists Michael Chertkov, Yeo-Jin Chung, Ildar Gabitov and Avner Peleg, proposes that an understanding of the physics of signal propagation is important for evaluating and optimizing the performance of optical lines since the natural nonlinearity and disorder of optical fibers results in the corruption of signals traveling through the fiber which, in turn, can lead to information loss. The theory enables scientists to do a comparative analysis of different techniques for the suppression of these information outages.

In addition to the theoretical advance, the team developed, and subsequently patented, a new technique called the pinning method that is capable of reducing the negative impact of optical fiber structural disorder and improving high-speed optical fiber system performance.

Besides the Los Alamos scientists, other collaborators include Igor Kolokolov and Vladimir Lebedev from Russia's Landau Institute and Joshua Soneson from the University of Arizona in Tucson.

Source: DOE/Los Alamos National Laboratory

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

Artificial leaf jumps developmental hurdle

Feb 18, 2014

In a recent early online edition of Nature Chemistry, ASU scientists, along with colleagues at Argonne National Laboratory, have reported advances toward perfecting a functional artificial leaf.

Book pulls appplications from abstract mathematics

Jan 22, 2014

Mathematics can explain how light waves propagate in a fiber optic cable or that a linear flow of air over a plane's wings gives passengers a smooth ride, while nonlinear flow causes turbulence.

Atomic clock comparison via data highways

Apr 27, 2012

(Phys.org) -- Optical atomic clocks measure time with unprecedented accuracy. However, it is the ability to compare clocks with one another that makes them applicable for high-precision tests in fundamental ...

KDDI, The Ubiquitous Provider Provides More

Nov 19, 2007

KDDI Corporation is focused on total customer service. Currently, DVD quality film may be purchased by broadband subscribers. In the R&D division, KDDI is poised to offer the first Quad HD download over the ...

Quantum Computing Steps Forward

Jan 20, 2006

With the University of Michigan’s latest production of a quantum chip, it’s another step forward for quantum computers that will someday dwarf the abilities of today’s machines. ...

Recommended for you

How to test the twin paradox without using a spaceship

1 hour ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

CERN: World-record current in a superconductor

Apr 15, 2014

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

User comments : 0

More news stories

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...