Fresh fossil evidence of eye forerunner uncovered

Dec 12, 2007

Ancient armoured fish fossils from Australia present some of the first definite fossil evidence of a forerunner to the human eye, a scientist from The Australian National University says.

Dr Gavin Young from the Department of Earth and Marine Sciences at ANU has analysed fossilised remains of 400-million-year-old Devonian placoderms – jawed ancestors of modern fish whose bodies were protected by thick bony armour. His findings are published in the latest edition of Biology Letters, a journal of the Royal Society, London.

“The ancient limestone reefs exposed around Lake Burrinjuck in New South Wales have produced exceptionally well preserved placoderm specimens with the braincase intact,” Dr Young said.

The palaeobiologist discovered that unlike all living vertebrate animals – which includes everything from the jawless lamprey fish to humans – placoderms had a different arrangement of muscles and nerves supporting the eyeball – evidence of an “intermediate stage” between the evolution of jawless and jawed vertebrates.

“The vertebrate eye is the best example of structural perfection – as used by proponents of intelligent design to claim that something so complex couldn’t possibly have evolved,” Dr Young said.

“Part of the trouble in tracing the evolution of the eye is that soft tissues don’t tend to fossilise. But the eye cavities in the braincase of these 400 million-year-old fossil fish were lined with a delicate layer of very thin bone. All the details of the nerve canals and muscle insertions inside the eye socket are preserved – the first definite fossil evidence demonstrating an intermediate stage in the evolution of our most complex sensory organ.

“These extinct placoderms had the eyeball still connected to the braincase by cartilage, as in modern sharks, and a primitive eye muscle arrangement as in living jawless fish.” Dr Young said that this anatomical arrangement is different from all modern vertebrates, in which there is a consistent pattern of tiny muscles for rotating each eyeball.

The placoderm fossils were analysed using computer X-ray tomography at ANU, a scanning technique that creates a three-dimensional image of complex organic structures. “What this research shows is that 400 million years ago there was already a complex eye, and one that was an intermediate form between jawless and jawed vertebrates,” Dr Young says. “This means that we’re able to add one more piece to the puzzle of how the human eye came to be.”

Source: Australian National University

Explore further: Alternate theory of inhabitation of North America disproved

Related Stories

'Map spam' puts Google in awkward place

4 hours ago

Google was re-evaluating its user-edited online map system Friday after the latest embarrassing incident—an image of an Android mascot urinating on an Apple logo.

Team develops faster, higher quality 3-D camera

4 hours ago

When Microsoft released the Kinect for Xbox in November 2010, it transformed the video game industry. The most inexpensive 3-D camera to date, the Kinect bypassed the need for joysticks and controllers by ...

Recommended for you

Bizarre 'platypus' dinosaur discovered

13 hours ago

Although closely related to the notorious carnivore Tyrannosaurus rex, a new lineage of dinosaur discovered in Chile is proving to be an evolutionary jigsaw puzzle, as it preferred to graze upon plants.

Deciphering the demise of Neandertals

Apr 24, 2015

Researchers from the University of Bologna, Italy, and the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, analysed two deciduous teeth from the prehistoric sites of Grotta di Fumane ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.