NIST imaging system maps nanomechanical properties

Dec 12, 2007
NIST imaging system maps nanomechanical properties
An atomic force microscope normally reveals the topography of a composite material (l.) NIST's new apparatus adds software and electronics to map nanomechanical properties (r.) The NIST system reveals that the glass fibers are stiffer than the surrounding polymer matrix but sometimes soften at their cores. Credit: DC Hurley/NIST

The National Institute of Standards and Technology has developed an imaging system that quickly maps the mechanical properties of materials—how stiff or stretchy they are, for example—at scales on the order of billionths of a meter. The new tool can be a cost-effective way to design and characterize mixed nanoscale materials such as composites or thin-film structures.

The NIST nanomechanical mapper uses custom software and electronics to process data acquired by a conventional atomic force microscope (AFM), transforming the microscope’s normal topographical maps of surfaces into precise two-dimensional representations of mechanical properties near the surface.

The images enable scientists to see variations in elasticity, adhesion or friction, which may vary in different materials even after they are mixed together. The NIST system, described fully for the first time in a new paper, can make an image in minutes whereas competing systems might take an entire day.

The images are based on measurements and interpretations of changes in frequency as a vibrating AFM tip scans a surface. Such measurements have commonly been made at stationary positions, but until now 2D imaging at many points across a sample has been too slow to be practical.

The NIST DSP-RTS system (for digital signal processor-based resonance tracking system) has the special feature of locking onto and tracking changes in frequency as the tip moves over a surface. Mechanical properties of a sample are deduced from calculations based on measurements of the vibrational frequencies of the AFM tip in the air and changes in frequency when the tip contacts the material surface.

NIST materials researchers have used the system to map elastic properties of thin films with finer spatial resolution than is possible with other tools. The DSP-RTS can produce a 256 × 256 pixel image with micrometer-scale dimensions in 20 to 25 minutes. The new system also is modular and offers greater flexibility than competing approaches. Adding capability to map additional materials properties can be as simple as updating the software.

Citation: A.B. Kos and D.C. Hurley. Nanomechanical mapping with resonance tracking scanned probe microscope. Measurement Science and Technology 19 (2008) 015504.

Source: National Institute of Standards and Technology

Explore further: A nanosized hydrogen generator

add to favorites email to friend print save as pdf

Related Stories

Peugeot hybrid compressed-air car set for Paris Motor Show

1 hour ago

An 860-kilogram concept city car from Peugeot indicates impressive fuel economy. This latest concept "has its sights set on meeting the French government's goal of putting an affordable 2.0l/100km (141mpg) car into production by 2020," said Jordan Bis ...

Hit 'Just Dance' game goes mobile Sept. 25

1 hour ago

Smartphone lovers will get to show off moves almost anywhere with the Sept. 25 release of a free "Just Dance Now" game tuned for mobile Internet lifestyles.

Alibaba's plan: Today, China. Tomorrow, the world.

2 hours ago

Amazon and eBay should watch their backs. As Chinese e-commerce powerhouse Alibaba readies what could be the biggest initial public offering ever on the New York Stock Exchange, it is quietly hinting at plans ...

Stem cells use 'first aid kits' to repair damage

2 hours ago

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

Last month was hottest August since 1880

2 hours ago

Last month was the hottest August on record for global average temperatures over land and ocean surfaces, the US National Oceanic and Atmospheric Administration said on Thursday.

Recommended for you

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 0