USC researchers explore genetic causes for male infertility

Dec 12, 2007

Researchers at the University of Southern California (USC) suggest epigenetics, or the way DNA is processed and expressed, may be the underlying cause for male infertility. The study will be published in the Dec. 12 issue of Public Library of Science One.

“This is the first report based on our knowledge that a broad epigenetic defect is associated with abnormal semen development,” says Rebecca Sokol, M.D., MPH, professor of obstetrics and gynecology at the Keck School of Medicine of USC. “From our data, it is plausible to speculate that male infertility may be added to the growing list of adulthood diseases that have resulted from fetal origins.”

In the United States, about 4 million married couples of child-bearing age are infertile and in approximately 40 percent of the cases, the infertile partner is the man. In most cases, the cause of the male infertility is not known. However, preliminary data suggest that genetics play a role in infertility. Changes in chromosomes and the genetic code have been well documented. Attention is now focused on epigenetic changes. Epigenetic change, which is defined as in addition to changes in genetic sequence, includes any process that alters gene activity without changing the DNA sequence. Some of these epigenetic changes are inherited from one generation to the next.

The researchers studied semen samples from male members of couples attending an infertility clinic. Using highly specialized molecular biology techniques, the researchers studied the epigenetic state of DNA from each man’s sperm. They found that sperm DNA from men with low sperm counts or abnormal sperm had high levels of methylation, which is one of the ways the body regulates gene expression. However, DNA from normal sperm samples showed no abnormalities of methylation.

DNA methylation results from well known biochemical alterations that occur during epigenetic reprogramming, which is a normal physiologic process that occurs during embryonic development.

“Disturbance of epigenetic programming can result in abnormal gene activity or function, even if there is no change in DNA sequence,” continues Sokol.

The epigenetic irregularity found in these abnormal sperm samples was present in a high proportion of genes that were studied. The results suggest that the underlying mechanism for these epigenetic changes may be improper erasure of DNA methylation during epigenetic reprogramming of the male germ line.

“If we can identify what causes these changes to the sperm DNA, then we might be able to prevent certain types of male infertility,” concludes Sokol. “This is particularly important because recent animal studies have suggested that epigenetics may have broader implications. Exposures to chemicals as a fetus may lead to adult diseases. Perhaps such exposures may be causing the changes in the sperm DNA that we have identified. Studies to uncover a relationship between chemical exposures and alterations in sperm DNA should shed light on this.”

Source: University of Southern California

Explore further: A nucleotide change could initiate fragile X syndrome

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A nucleotide change could initiate fragile X syndrome

17 hours ago

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

Mutation disables innate immune system

Aug 29, 2014

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

User comments : 0