Deadly virus strips away immune system's defensive measures

Dec 12, 2007

When the alert goes out that a virus has invaded the body, cells that have yet to be attacked prepare by "armoring" themselves for combat, attaching specific antiviral molecules to many of their own proteins to help resist the invader.

These antiviral molecules aren't literally armor — the virus won't physically beat on them. But scientists believe adding these molecules to cellular proteins, like putting on armor, changes the proteins in ways that make the cells resistant to the coming viral attack.

Unfortunately, the deadly Crimean Congo hemorrhagic fever virus (CCHFV) knows a simple but devastating way around this defense: just cut the armor off host cell proteins. Researchers from Washington University School of Medicine in St. Louis and Mount Sinai Medical School in New York report the new insight in Cell Host & Microbe, calling it an "important hint" as to why the virus is so virulent.

"I think over time we're going to discover that pretty much anything host cells have ever done to combat viruses will have been discovered, manipulated, evaded or subverted by one virus or another," says co-author Herbert W. "Skip" Virgin, M.D., Ph.D., head of the Department of Pathology and Immunology. "There's a simple reason for that: viruses have been studying us for a lot longer than we've been studying them."

According to one research study, fatalities in CCHFV virus outbreaks can range from 8 to 80 percent. Relatively little is known about the tick-borne viral disease, which also can spread via the respiratory secretions of infected patients and has broken out several times in recent years in Africa, Asia and the Middle East.

With support from the National Institutes of Health's Regional Centers for Excellence in Biodefense and Emerging Infectious Diseases Research program, Virgin teamed up with co-author Adolfo García-Sastre, Ph.D., associate professor of microbiology at the Mount Sinai School of Medicine, to look for ways CCHFV evades the immune system. Virgin is an expert on virus and immune system interactions who receives support from the Midwest Regional Center for Excellence (MRCE); García-Sastre is an expert in replication of RNA viruses who receives support from the New England Regional Center for Excellence.

One way the immune system responds to viral invasion is increased production of a class of protein hormones known collectively as interferon. In recent years, Virgin's lab has shown that one result of this spike in interferon levels is that the antiviral molecule known as ISG15 (for interferon-stimulated gene 15) is produced and attached to many different cell proteins.

ISG15 forms a particularly strong chemical bond with the cellular proteins it attaches to. But scientists found CCHFV has protein "knives" able to cut that bond. Those same knives also cut the bonds between cellular proteins and ubiquitin, another protein related to ISG15 that is key for bodily defense against viruses.

The viral proteins acting as immune system saboteurs belong to a class of cutting proteins known as OTU (for ovarian tumor) domain-containing proteases. In addition to their contributions to defeating host immune systems, these proteins are essential to viral replication, clipping apart the viral material duplicated by the host cell for assembly into a new viral particle.

"That's perhaps the most incredible thing about these results—the virus managed to adapt proteins so that they can both serve an essential role in the virus' life cycle and counter a critically important part of the host defense system all at the same time," says Virgin, who is also the Edward Mallinckrodt Professor of Pathology and Immunology.

Because of their role in viral replication, proteases are already a popular target for drug development. Many HIV patients, for example, take protease inhibitors. If viruses commonly use OTU domain-containing proteases to sabotage host immune systems, Virgin notes, that may make them an even more appropriate target for new treatments.

“This collaboration points to the power of the Regional Center of Excellence Program — bringing together two outstanding scientists to greatly accelerate our understanding of this deadly virus,” says Samuel L. Stanley, Jr., M.D., director of the MRCE and vice chancellor of research at Washington University.

Source: Washington University School of Medicine

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

US company sells out of Ebola toys

8 hours ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

UN biodiversity meet commits to double funding

8 hours ago

A UN conference on preserving the earth's dwindling resources wrapped up Friday with governments making a firm commitment to double biodiversity aid to developing countries by 2015.

Facebook unfriends federal drug agency

9 hours ago

(AP)—Facebook wants assurances from the Drug Enforcement Administration that it's not operating any more fake profile pages as part of ongoing investigations.

Partial solar eclipse over the U.S. on Thursday, Oct. 23

9 hours ago

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

Recommended for you

Growing a blood vessel in a week

17 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

20 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0