Improved Superconductivity in Multi-Walled Carbon Nanotubes

Mar 13, 2006 feature
Single-Walled Carbon Nanotube

A group of researchers from several institutions in Japan has observed superconductivity — a phenomenon in which electrons flow with no resistance — in billionth-of-a-meter sized cylindrical carbon molecules known as “multi-walled carbon nanotubes.” The nanotubes’ ability to superconduct adds to their many intriguing electrical and physical characteristics. Moreover, it increases the likelihood that carbon nanotubes will one day drastically improve electronics, building materials, and many other products.

To be fair, observing a supercurrent through carbon nanotubes is not a new discovery. But past studies, which have used ropes made of single-walled carbon nanotubes (those consisting of just one cylinder rather than several nested cylinders), have only been able to achieve superconductivity by deep-freezing the nanotubes down to about 0.4 degrees Kelvin (K). Such an ultra-low “critical temperature,” as it’s called — just fractions of a degree away from 0 K, the coldest temperature possible — is very difficult to achieve and maintain in a laboratory.

“In our study, the nanotubes superconducted at a much more manageable critical temperature of 12 K,” said Aoyama Gakuin University scientist Junji Haruyama. Haruyama is the lead author of the paper describing the work, which appears in the February 10, 2006, online edition of Physical Review Letters. “While 12 K is still extremely cold by everyday standards, it requires far less work to sustain. Also, in terms of potential applications of superconducting nanotubes, such as quantum molecular computing, this higher temperature is far more promising.”

The scientists measured the supercurrent through the nanotubes by creating arrays of nano-sized electric “junctions” — very thin conducting layered structures. They began with a layer of aluminum, prepared such that it contained a grid of nanoscale pores. On top of this they deposited a layer of MWNTs, which inserted themselves vertically into the aluminum pores. Finally, they topped the nanotubes with a layer of gold.

The group created three of these arrays. By carefully cutting off part of the nanotube layer, they created an array in which the nanotubes were flush with the aluminum surface and another in which the nanotubes jutted out slightly above the surface. For the third array, no cutting was done. As a result, each nanotube remained longer than the depth of each pore, and thus “spilled” over onto the aluminum.

These three cases correspond to a different degree of nanotube-gold contact, referred to as “end bonding.” In the first array the nanotubes are only slightly end bonded with the gold, while in the third they are fully end bonded.

End bonding turned out to be one important factor affecting the nanotubes’ ability to superconduct. Only the array containing entirely end-bonded MWNTs exhibited superconductivity at 12 K. Because the nanotubes were folded over, the gold could only make contact with the outer shell of each nanotube, rather than also bonding with the inner shells. However, in this third case the gold touched far more nanotube surface area.

“We concluded that being entirely end bonded with the gold electrically activated all the shells in each nanotube,” said Haruyama. “In the other two arrays, only some of the shells were activated. This indicates that superconductivity in MWNTs is strongly related to the number of electrically active shells and, by extension, that electric interactions between shells play a large role.”

Haruyama and his colleagues are planning several follow-up studies. These include an experiment that will attempt to increase the critical temperature of the nanotubes, as well as an investigation into how coupling neighboring nanotubes in the array’s MWNT layer could affect their superconductivity.

Citation: "Superconductivity in Entirely End-Bonded Multiwalled Carbon Nanotubes", Phys. Rev. Lett. 96, 057001 (2006)

By Laura Mgrdichian, Copyright 2006 PhysOrg.com

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

A solid case of entanglement

Jan 11, 2010

Physicists have finally managed to demonstrate quantum entanglement of spatially separated electrons in solid state circuitry.

Three-dimensional carbon goes metallic

Nov 06, 2013

A theoretical, three-dimensional (3D) form of carbon that is metallic under ambient temperature and pressure has been discovered by an international research team.

How graphene's electrical properties can be tuned

Sep 26, 2011

An accidental discovery in a physicist's laboratory at the University of California, Riverside provides a unique route for tuning the electrical properties of graphene, nature's thinnest elastic material. ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...