Extracellular protein sensitizes ovarian cancer cells to chemotherapy

Dec 10, 2007

Scientists have uncovered critical new details about the mechanisms that modulate the response of ovarian cancer cells to chemotherapy. The research, published by Cell Press in the December issue of Cancer Cell, helps to explain why many patients develop resistance to the taxane class of drugs and may lead to improved treatment of ovarian cancer.

Cancer cells divide rapidly and undergo extensive microtubule-driven restructuring as they proliferate. Taxanes, such as paclitaxel (Taxol), interfere with the dynamic growth of microtubules by directly binding to them and making them more stable and, as a result, disrupt the normal process of cell division. Paclitaxel has been used extensively to treat lung, ovarian and breast cancers but drug resistance limits the clinical usefulness of this drug to only about half of breast or ovarian cancer patients.

Although it is clear that taxane resistance is associated with a loss of stable microtubules and that microtubule stability can be influenced by signals from the extracellular matrix (ECM), a role for ECM proteins in the modulation of paclitaxel sensitivity has not been established. To explore the connection between regulation of microtubules and taxane resistance, Dr. James D. Brenton from the Cancer Research UK Cambridge Research Institute in Cambridge, England and colleagues performed an extensive examination of ovarian cancer cell lines that were sensitive or resistant to paclitaxel.

The researchers found that the ECM protein, transforming growth factor beta induced (TGFBI), was significantly reduced in paclitaxel-resistant cells. Importantly, TGFBI mediated sensitization to paclitaxel and loss of TGFBI was sufficient to induce paclitaxel resistance. TGFBI induced microtubule stabilization that was dependent on integrin-mediated FAK and Rho signaling. Further, analysis of ovarian cancer samples taken after treatment with paclitaxel revealed that paclitaxel-induced cell death was associated with high levels of TGFBI expression.

These results identify TGFBI as an ECM protein that induces microtubule stability and modulates sensitivity to paclitaxel in ovarian cell lines and in patients receiving paclitaxel therapy. “Our findings have potentially significant clinical applications as TGFBI protein expression is lost in one third of primary ovarian and lung cancers and FAK is low or absent in one-third of ovarian cancer patients,” explains Dr. Brenton. “It is possible that TGFBI could be used as a biomarker for selecting patients likely to respond to taxane therapy. In addition, proteins that activate TGFBI or mimic its action may be an effective strategy for modulating the response to widely used drugs like paclitaxel or docetaxel.”

Source: Cell Press

Explore further: Target growth-driving cells within tumors, not fastest-proliferating cells

add to favorites email to friend print save as pdf

Related Stories

Hoverbike drone project for air transport takes off

9 hours ago

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Study indicates large raptors in Africa used for bushmeat

10 hours ago

Bushmeat, the use of native animal species for food or commercial food sale, has been heavily documented to be a significant factor in the decline of many species of primates and other mammals. However, a new study indicates ...

'Shocking' underground water loss in US drought

10 hours ago

A major drought across the western United States has sapped underground water resources, posing a greater threat to the water supply than previously understood, scientists said Thursday.

Recommended for you

Same cancer, different time zone

10 hours ago

Just as no two people possess the same genetic makeup, a recent study has shown that no two single tumor cells in breast cancer patients have an identical genome.

Brazilian researchers identify RNA that regulates cell death

14 hours ago

Researchers from the University of São Paulo (USP) have identified an RNA known as INXS that, although containing no instructions for the production of a protein, modulates the action of an important gene in the process ...

User comments : 0