Scientists identify gene that influences alcohol consumption

Dec 05, 2007

A variant of a gene involved in communication among brain cells has a direct influence on alcohol consumption in mice, according to a new study by scientists supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of the National Institutes of Health (NIH), and the U.S. Army.

Scientists do not know yet whether a similar gene variant, with a similar effect on alcohol consumption, exists in humans.

Known as Grm7, the gene encodes a receptor subtype that inhibits the release of glutamate and other neurotransmitter molecules that brain cells use to communicate with one another. Researchers identified a gene variant, or polymorphism, that reduces the abundance of Grm7 messenger RNA (mRNA) in brain tissue. mRNA is the molecular intermediate between a gene and its protein product. Mice that possess this gene variant drink more alcohol than do mice with higher brain levels of Grm7 mRNA. A report of the study appears as an online Article in Press in Genomics.

“This is a noteworthy contribution, particularly since identifying genes that predispose to alcohol-related behaviors is such an arduous task,” says NIAAA Director Ting-Kai Li, M.D.

Scientists have long known that genes account for a significant proportion of the risk for alcoholism. However, the fact that there are multiple such genes that interact with each other and with multiple environmental factors to influence drinking behavior has hampered studies aimed at isolating individual genes.

“Controlling for this background noise -- the various gene-gene and gene-environment interactions -- presents considerable methodological challenges,” notes first author Csaba Vadasz, Ph.D., professor of psychiatric research in the department of psychiatry at New York University School of Medicine, and Director of the NeuroBehavioral Genetic Research Program at the Nathan Kline Institute in Orangeburg, N.Y.

To overcome these difficulties, Dr. Vadasz and colleagues applied a variety of genetic and analytic techniques to animals having nearly identical genetic background, but differing in their preference for alcohol, to identify a chromosomal region, and ultimately the Grm7 gene, associated with alcohol preference.

“Our findings support emerging evidence of the critical role that the brain’s glutamate pathways play in addiction,” says Dr. Vadasz. “While dopamine has traditionally been cast as a central actor in the neurochemistry of substance use and abuse, recent studies indicate that glutamate systems play an important role in reinforcement and addiction.”

If further studies show that a similar gene variant is relevant to alcohol problems in humans, the finding by Dr. Vadasz and colleagues may lead to new opportunities for developing drugs to treat alcohol dependence. Dr. Vadasz speculates that such drugs might be designed to control the level of the Grm7 gene product or modulate the activity of the gene product itself.

Source: National Institute on Alcohol Abuse and Alcoholism

Explore further: Team identifies mutations associated with development of congenital heart disease

add to favorites email to friend print save as pdf

Related Stories

Flocks of starlings ride the wave to escape

1 hour ago

Why does it seem as if a dark band ripples through a flock of European starlings that are steering clear of a falcon or a hawk? It all lies in the birds' ability to quickly and repeatedly dip to one side to avoid being attacked. ...

Blue Freedom uses power of flowing water to charge

1 hour ago

Good friends may decide to tell you something that is not true but nonetheless sustaining: Nothing is impossible. That was the case of Blue Freedom co-founder who asked his friend if it would be possible ...

Recommended for you

Blood test may shed new light on Fragile X related disorders

14 hours ago

A blood test may shed new light on Fragile X syndrome related disorders in women, according to a new study published in the March 25, 2015, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Recycling histones through transcription

17 hours ago

Cells reuse a part of the histones which are used to pack DNA, according to a current study by Karolinska Institutet. The study, which is published in the journal Genome Research, was conducted on yeast cells, but it is ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.