Scientists identify gene that influences alcohol consumption

Dec 05, 2007

A variant of a gene involved in communication among brain cells has a direct influence on alcohol consumption in mice, according to a new study by scientists supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of the National Institutes of Health (NIH), and the U.S. Army.

Scientists do not know yet whether a similar gene variant, with a similar effect on alcohol consumption, exists in humans.

Known as Grm7, the gene encodes a receptor subtype that inhibits the release of glutamate and other neurotransmitter molecules that brain cells use to communicate with one another. Researchers identified a gene variant, or polymorphism, that reduces the abundance of Grm7 messenger RNA (mRNA) in brain tissue. mRNA is the molecular intermediate between a gene and its protein product. Mice that possess this gene variant drink more alcohol than do mice with higher brain levels of Grm7 mRNA. A report of the study appears as an online Article in Press in Genomics.

“This is a noteworthy contribution, particularly since identifying genes that predispose to alcohol-related behaviors is such an arduous task,” says NIAAA Director Ting-Kai Li, M.D.

Scientists have long known that genes account for a significant proportion of the risk for alcoholism. However, the fact that there are multiple such genes that interact with each other and with multiple environmental factors to influence drinking behavior has hampered studies aimed at isolating individual genes.

“Controlling for this background noise -- the various gene-gene and gene-environment interactions -- presents considerable methodological challenges,” notes first author Csaba Vadasz, Ph.D., professor of psychiatric research in the department of psychiatry at New York University School of Medicine, and Director of the NeuroBehavioral Genetic Research Program at the Nathan Kline Institute in Orangeburg, N.Y.

To overcome these difficulties, Dr. Vadasz and colleagues applied a variety of genetic and analytic techniques to animals having nearly identical genetic background, but differing in their preference for alcohol, to identify a chromosomal region, and ultimately the Grm7 gene, associated with alcohol preference.

“Our findings support emerging evidence of the critical role that the brain’s glutamate pathways play in addiction,” says Dr. Vadasz. “While dopamine has traditionally been cast as a central actor in the neurochemistry of substance use and abuse, recent studies indicate that glutamate systems play an important role in reinforcement and addiction.”

If further studies show that a similar gene variant is relevant to alcohol problems in humans, the finding by Dr. Vadasz and colleagues may lead to new opportunities for developing drugs to treat alcohol dependence. Dr. Vadasz speculates that such drugs might be designed to control the level of the Grm7 gene product or modulate the activity of the gene product itself.

Source: National Institute on Alcohol Abuse and Alcoholism

Explore further: New gene technique identifies previously hidden causes of brain malformation

add to favorites email to friend print save as pdf

Related Stories

Ticketfly buying WillCall for on-premise data

11 minutes ago

Ticketfly Inc., a San Francisco-based technology company among several posing a challenge to Ticketmaster, is acquiring WillCall Inc., a crosstown rival that turns your smartphone into a mobile wallet at live events.

Voice, image give clues in hunt for Foley's killer

27 minutes ago

Police and intelligence services are using image analysis and voice-recognition software, studying social media postings and seeking human tips as they scramble to identify the militant recorded on a video ...

Recommended for you

Gene therapy protects mice from heart condition

Aug 20, 2014

A new gene therapy developed by researchers at the University of Missouri School of Medicine has been shown to protect mice from a life-threatening heart condition caused by muscular dystrophy.

Study finds crucial step in DNA repair

Aug 18, 2014

Scientists at Washington State University have identified a crucial step in DNA repair that could lead to targeted gene therapy for hereditary diseases such as "children of the moon" and a common form of ...

User comments : 0