Researcher develops realistic cancer growth models

Dec 05, 2007
Researcher develops realistic cancer growth models
A scanning electron microscope image of a cell-seeded PLG scaffold. Credit: Claudia Fischbach-Teschl

Scientists can only develop new cancer drugs or search for cures by testing their theories on the real thing. Traditionally, they've done so by culturing cancer cells on petri dishes or plastic slides. But those cancer cells do not behave the way they do in the body. They only partially re-create the aggressive behavior of tumors in real patients.

That is the problem that drives Claudia Fischbach-Teschl, Cornell assistant professor of biomedical engineering, whose lab creates realistic experimental tumor models, which may then lead to better drug therapies or even a cure.

"We allow cells to grow in a 3D manner and to reorganize into tissue that better mimics their behavior and composition in the body," Fischbach-Teschl explained.

On temperature-, carbon dioxide- and humidity-controlled shelves in her lab at the Baker Institute for Animal Health, Fischbach-Teschl handles vials of pinkish, sugar-based liquids that contain what look like tiny, white floating globules. But when slid under a microscope, the beads can be seen to serve as holders, or scaffolds, of hundreds of cancer cells.

These 3D scaffolds, synthetically or naturally derived polymeric substances, act as harnesses for tumor cells as they grow, allowing the tumors to develop more closely to how they grow in the body than when maintained on flat plastic surfaces.

Fischbach-Teschl's work also involves trying to figure out why cancer cells are so able to adapt to the body's environment, why they are able to survive, and what biological secretions or proteins allow these cells to reproduce at a destructive rate.

Earlier this year in research published in Nature Methods, Fischbach-Teschl and colleagues, including David J. Mooney at Harvard University, showed that tumors grown in a 3D manner are resistant to cancer treatments, such as chemotherapy. They found the tumor models' behavior more aggressive than those grown on traditional glass slides.

Furthermore, an earlier generation of 3D tumor models, grown in what is known as a Matrigel culture, is limited in its ability to develop such characteristics. Instead, the Cornell scientists grew tumors in synthetic, porous scaffolds made of a lab-created polymer called poly(lactide-co-glycolide) (PLG). The PLG scaffolds, which look like tiny, white, flat sponges, allow the tumors to grow much more aggressively than in the Matrigel.

By then injecting the tumors into mice for in-vivo analysis, the researchers discovered that the tumors pregrown in the PLG scaffolds developed into bigger and more aggressive tumors. They also were able to analyze distinct biological functions of the cells, such as the presence of secretions that might point to the cancer cells' ability to survive.

The purpose of Fischbach-Teschl's research is to gain a fundamental understanding of cancer cell behavior that can be used to develop more effective anti-cancer drug therapy.

Fischbach-Teschl collaborates with groups in four different Cornell colleges (Weill Cornell Medical College and the Colleges of Veterinary Medicine, Human Ecology and Engineering) on various projects, including one with mechanical engineering researchers and other scientists to study bone metastasis.

The scientists hypothesize that biomechanical and structural effects of the bone mediate the migration of tumors cells to different sites, not just the primary tumor.

"Using their knowledge in the regulation of bone physiology and our approach on cancer biology, we'll gain a better understanding of how interactions between bone and tumor cells may contribute to bone metastasis," she said.

Source: By Anne Ju, Cornell University

Explore further: Phase 3 study may be game-changer for acute myeloid leukemia

add to favorites email to friend print save as pdf

Related Stories

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Cloaked DNA nanodevices survive pilot mission

19 hours ago

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Recommended for you

US OKs first-ever DNA alternative to Pap smear (Update 2)

12 hours ago

U.S. government health regulators have cleared a genetic test from Roche as a first-choice screening option for cervical cancer. It was a role previously reserved for the Pap smear, the decades-old mainstay of women's health.

New breast cancer imaging method promising

18 hours ago

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could ...

Palliation is rarely a topic in studies on advanced cancer

19 hours ago

End-of-life aspects, the corresponding terminology, and the relevance of palliation in advanced cancer are often not considered in publications on randomized controlled trials (RCTs). This is the result of an analysis by ...

User comments : 0

More news stories

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.