When do gas giants reach the point of no return?

Dec 05, 2007

Planetary scientists at UCL have identified the point at which a star causes the atmosphere of an orbiting gas giant to become critically unstable, as reported in this week’s Nature. Depending upon their proximity to a host star, giant Jupiter-like planets have atmospheres which are either stable and thin, or unstable and rapidly expanding. This new research enables us to work out whether planets in other systems are stable or unstable by using a three dimensional model to characterise their upper atmospheres.

Tommi Koskinen of UCL’s Physics & Astronomy Department is lead author of the paper and says: “We know that Jupiter has a thin, stable atmosphere and orbits the Sun at five Astronomical Units (AU) - or five times the distance between the Sun and the Earth. In contrast, we also know that closely orbiting exoplanets like HD209458b - which orbits about 100 times closer to its sun than Jupiter does - has a very expanded atmosphere which is boiling off into space. Our team wanted to find out at what point this change takes place, and how it happens.

“Our paper shows that if you brought Jupiter inside the Earth's orbit, to 0.16AU, it would remain Jupiter-like, with a stable atmosphere. But if you brought it just a little bit closer to the Sun, to 0.14AU, its atmosphere would suddenly start to expand, become unstable and escape. This dramatic change takes place because the cooling mechanism that we identified breaks down, leading to the atmosphere around the planet heating up uncontrollably.”

Professor Alan Aylward, co-author of the paper, explains some of the factors which the team incorporated in order to make the breakthrough: “For the first time we’ve used 3D-modelling to help us understand the whole heating process which takes place as you move a gas giant closer to its sun. The model incorporates the cooling effect of winds blowing around the planet - not just those blowing off the surface and escaping.

“Crucially, the model also makes proper allowances for the effects of H3+ in the atmosphere of a planet. This is an electrically-charged form of hydrogen which strongly radiates sunlight back into space and which is created in increasing quantities as you heat a planet by bringing it closer to its star.

“We found that 0.15AU is the significant point of no return. If you take a planet even slightly beyond this, molecular hydrogen becomes unstable and no more H3+ is produced. The self-regulating, ‘thermostatic’ effect then disintegrates and the atmosphere begins to heat up uncontrollably.”

Professor Steve Miller, the final contributing author to the paper, puts the discovery into context: “This gives us an insight to the evolution of giant planets, which typically form as an ice core out in the cold depths of space before migrating in towards their host star over a period of several million years. Now we know that at some point they all probably cross this point of no return and undergo a catastrophic breakdown.

“Just twelve years ago astronomers were searching for evidence of the first extrasolar planet. It’s amazing to think that since then we’ve not only found more than 250 of them, but we’re also in a much better position to understand where they came from and what happens to them during their lifetime.”

Source: University College London

Explore further: Image: NGC 6872 in the constellation of Pavo

add to favorites email to friend print save as pdf

Related Stories

Indian spacecraft on course to enter Mars orbit (Update)

15 hours ago

India will soon know if its first interplanetary mission will achieve its goal, when a spacecraft built with homegrown technology for a remarkably low price tag of $75 million begins its final maneuvers into ...

Image: Rainbow aurora captured from space station

Sep 17, 2014

Auroras occur when particle radiation from the Sun hits Earth's upper atmosphere, making it glow in a greenish blue light. ESA astronaut Alexander Gerst has one of our planet's best views of this phenomenon, ...

NASA air campaigns focus on Arctic climate impacts

Sep 17, 2014

Over the past few decades, average global temperatures have been on the rise, and this warming is happening two to three times faster in the Arctic. As the region's summer comes to a close, NASA is hard at ...

NASA's Maven spacecraft reaches Mars this weekend

Sep 17, 2014

Mars, get ready for another visitor or two. This weekend, NASA's Maven spacecraft will reach the red planet following a 10-month journey spanning 442 million miles (711 million kilometers).

Recommended for you

Image: NGC 6872 in the constellation of Pavo

13 hours ago

This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused ...

Measuring the proper motion of a galaxy

14 hours ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

Gravitational waves according to Planck

Sep 22, 2014

Scientists of the Planck collaboration, and in particular the Trieste team, have conducted a series of in-depth checks on the discovery recently publicized by the Antarctic Observatory, which announced last ...

Infant solar system shows signs of windy weather

Sep 22, 2014

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Finding hints of gravitational waves in the stars

Sep 22, 2014

Scientists have shown how gravitational waves—invisible ripples in the fabric of space and time that propagate through the universe—might be "seen" by looking at the stars. The new model proposes that ...

How gamma ray telescopes work

Sep 22, 2014

Yesterday I talked about the detection of gamma ray bursts, intense blasts of gamma rays that occasionally appear in distant galaxies. Gamma ray bursts were only detected when gamma ray satellites were put ...

User comments : 0