String of Fullerene Pearls

Nov 30, 2007

Under an atomic force microscope, the tiny structures look like fragments of nanoscopic pearl necklaces. In reality, the “pearls” are fullerene molecules that are linked together by means of a special fullerene-binding molecule. Spanish researchers describe their method for “threading” these nanopearls in the latest issue of the journal Angewandte Chemie.

Fullerenes are spherical, cage-like molecules made of 60 carbon atoms whose linkages resemble the five- and six-sided leather patches on a soccer ball. Recently, a team in Madrid headed by Nazario Martín developed a novel electroactive “fullerene receptor” molecule, a molecule that specifically recognizes and binds to the surfaces of fullerenes.

Now the researchers have gone a step further: They have produced molecular chimeras by binding their fullerene receptors to a fullerene molecule. The receptor portion is a system of eleven rings. It recognizes the fullerene portion of neighboring fullerene-receptor chimeras and grasps it from two sides like a pincer. This results in linear aggregates of molecules lined up like pearls. The researchers found fragments containing up to 35 “pearls” under the atomic force microscope.

When the pincer-like receptor “grasps” the fullerene, its flat aromatic rings spread over the equally flat ring systems on the fullerene surface. This results in special binding interactions between the electrons of these ring systems. Under certain conditions, it is possible to transfer electrons between such “complementary” electron systems. This property could make these fragments interesting as a new starting material for more efficient optoelectronic components.

In any case, the formation of this supramolecular polymer represents a new approach to the controlled organization of electroactive materials.

Citation: Nazario Martín, Self-Organization of Electroactive Materials: A Head-to-Tail Donor–Acceptor Supramolecular Polymer, Angewandte Chemie International Edition, doi: 10.1002/anie.200703049

Source: Angewandte Chemie

Explore further: Protons fuel graphene prospects

add to favorites email to friend print save as pdf

Related Stories

Scientists build world's smallest 'water bottle'

Nov 19, 2010

Scientists have designed and built a container that holds just a single water molecule. The container consists of a fullerene cage and a phosphate moiety that acts as the “cap” to keep the water ...

Recommended for you

Protons fuel graphene prospects

9 hours ago

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

Nov 24, 2014

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.