Sandwich technique eases 3D optical chip fabrication

Nov 29, 2007
Sandwich technique eases 3D optical chip fabrication

Complex three-dimensional (3D) integrated circuits involving both optical and electronic elements are now easier to make, thanks to a “wafer bonding” technique developed by a European research consortium. With the right commercial backing, the new technology will help Europe stay competitive in communications and sensor technology.

Photonics is the science of controlling photons – the particles that make up light. Photonic devices are essential in telephone and computer networks, where they manage the flow of information along optical fibres. Pollution monitors, laser rangefinders, surgical lasers and DVD players are other examples of photonics in action.

Photonic devices are made on chips, in a similar way to electronic circuits, by combining elements such as laser diodes, waveguides and detectors. Some of these circuits use purely optical technology, but most are hybrids that include both photonic and electronic components.

The problem, as Helmut Heidrich of the Fraunhofer Institute for Telecommunications in Berlin explains, is that the growing complexity of these devices is pushing the limits of current manufacturing technology. In particular, photonic components are based on special semiconductors such as gallium arsenide (GaAs) or indium phosphide (InP), while most electronic components use silicon. Working with two fundamentally different materials on the same chip is difficult and expensive.

Instead of using two types of semiconductor in the same process, an alternative might be to fabricate separate slices, each made from one basic material, and then stick the slices together. In June 2004, a team of European scientists set out to show that this “wafer bonding” technique could be an effective way to make complex multi-layer photonic devices.

The EU-supported WAPITI project was coordinated by the Fraunhofer Institute for Telecommunications and had four other academic partners: Romania’s National Institute for R&D in Microtechnologies, the Max Planck Institute of Microstructure Physics in Germany, the University of Athens, and the University of Cambridge in the UK. A fifth partner, the E V Group (Austria), contributed its expertise in processing and machinery for full wafer bonding. WAPITI began in June 2004 and finished in September 2007.

Microring lasers

To show the potential of wafer bonding, the project partners set out to build optical elements known as active microring resonators. Microrings, which act as power storage devices, are a key part of the lasers which allow high-bandwidth communications signals to be spread across a wide range of laser frequencies. They also have great potential as wavelength converters for telecommunications, and in monitoring applications, such as the detection of biological or chemical substances.

Using InP and GaAs wafer substrates, the WAPITI team created various kinds of microrings with radii down to 10 µm. The two-layer technique allowed them to create microrings with vertical connections to the transparent waveguides that carry light in and out of the microrings. Compared to the standard technique of horizontal coupling on a single layer, vertical coupling allows the production of smaller microrings, which in turn means higher data rates. The researchers tested their microring lasers with several channels of wavelength division multiplexing, at data rates up to 7 Gbit/s.

Accurate alignment is one of the biggest challenges in wafer bonding. Each wafer is a slice of semiconductor material large enough to hold thousands of chips; only towards the end of the process are the individual chips separated and packaged. With the width of the smallest electronic circuit elements now down to 45 nm or less, accurate alignment across the whole wafer is crucial.

Maintaining alignment is hard enough over a single wafer, but even trickier when two wafers are made separately and then bonded. Different wafer materials have different rates of thermal expansion, so temperature changes during processing can distort the alignment of the tiny multilayer circuit elements.

Using electron beam lithography, the WAPITI partners achieved good results in aligning wafers of InP and GaAs 50 mm in diameter – currently the standard wafer size for these materials. Future development will bring the need to bond 50 mm InP and GaAs wafers to full-size (300 mm) silicon wafers. For this more difficult task, “step-and-repeat” masking techniques may replace the current system of fabricating each layer as a single unit, Heidrich believes.

Practical technology

Although the project did not include an end-user, Heidrich is confident that the technology developed during WAPITI is very marketable. The partners are now looking for a commercial company with an interest in taking their devices to the next level.

He is particularly upbeat about potential applications in environmental monitoring. Because of their small size, the microring lasers developed by the project have output powers of less than 1 mW, so they are not suitable for long-distance communications, which requires powers of 6-30 mW. Their high-quality resonators are, however, extremely sensitive to surface modifications, so they should have many applications as novel detectors for biological or chemical substances, Heidrich believes.

Source: ICT Results

Explore further: New technology reduces size of spinal stimulator implants

add to favorites email to friend print save as pdf

Related Stories

NASA issues 'remastered' view of Jupiter's moon Europa

4 hours ago

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

Dish restores Turner channels to lineup

4 hours ago

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

LiquidPiston unveils quiet X Mini engine prototype

9 hours ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Recommended for you

Form Devices team designs Point as a house sitter

21 hours ago

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

Nov 22, 2014

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

Dish restores Turner channels to lineup

Nov 21, 2014

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

LiquidPiston unveils quiet X Mini engine prototype

Nov 21, 2014

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.