New Life for Linac

Nov 26, 2007
New Life for Linac
Crews working in the linac tunnel install two 4,000-pound magnets as part of the second bunch compressor for the LCLS.

After years of planning and hard work involving teams from every corner of the lab, SLAC's venerable linac has undergone the most radical set of alterations in its 40+ year career. Although a handful of minor tweaks remain, the effort to reconfigure the linac for the Linac Coherent Light Source (LCLS) is now just about complete.

"It's an exciting time and our first experiences have been very positive. We all look forward to the next level," said Paul Emma, head of the LCLS accelerator physics group. "The entire team is very happy with the results, but also glad for a break."

For decades, SLAC's two-mile long linac has enjoyed a resume of superlatives. Add to the list its new role as the injector and accelerator portion of the LCLS, the world's first hard-x-ray free electron laser. Commissioning of the injector portion began last April, and now, not only does the quality of the beam—emittance values, total charge, beam stability, etc.—meet or exceed design expectations, but the electron injector system is considered to be the brightest electron source in the world.

Although still fully capable of providing electron beams for high-energy physics experiments, the newly revved-up linac is now optimized to provide the ultra-fast, ultra-short pulses the LCLS will require. The newly reconfigured linac is specially optimized to create and accelerate the electron beams that will be used to generate the LCLS's powerful x-rays.

Converting the existing linac to an electron injector and accelerator for a free-electron laser was no small task, requiring the expertise of a host of SLAC working groups—including Controls, Alignment, Metrology, Environmental Safety and Health, Rigging, the Accelerator Division, Manufacturing and Purchasing, in addition to dozens of contractors.

"It was truly a site-wide operation," said Operations Manager Kathleen Ratcliffe, who oversaw the initial stages of this year's installation.

Many components, including beam diagnostic modules, magnets and accelerator sections had to be added, removed or shuffled to new locations.

"I called it the linac shuffle because we were moving stuff around and putting new stuff in—it was all spread out. There was a lot of movement," said Operations Manager Greg Diaz, who, along with Ratcliffe, oversaw the final stages of the project during the current shutdown.

Among the most complex of the recent installations was the second of two bunch compressors, or magnet chicanes, designed to shorten the bunch length of each electron pulse. The first such chicane, measuring about 18 feet long, was installed a year ago. The second chicane measures about 75 feet long and comprises enormous quadrupole magnets, each weighing 4,000 pounds, or about as much as a Ford Explorer. The scale of these components is necessary because the beam energy is higher by the time the pulses reach the second chicane. Between the two chicanes, the beam increases in energy from 250 Mev to 4.3 GeV, making the electrons harder to steer and requiring larger magnets.

Now that all of the LCLS-related hardware is in place along the linac, commissioning can continue in anticipation of first light in 2009. Emma says the challenge facing the team now will be to preserve the unprecedented beam brightness through to the Undulator Hall.

Source: by Brad Plummer, SLAC

Explore further: Research group figures out a way to film a laser in normal air bouncing off mirrors (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

SLAC scientists create twisted light

Sep 19, 2013

(Phys.org) —Scientists at SLAC have found a new method to create coherent beams of twisted light – light that spirals around a central axis as it travels. It has the potential to generate twisted light ...

Small X-band photoinjector packs powerful punch

Sep 25, 2012

(Phys.org)—Accelerator physicists at SLAC have started commissioning the world's most compact photoinjector – a device that spits out electrons when hit by light. Photoinjectors are used to generate electrons ...

Recommended for you

Building the next generation of efficient computers

23 hours ago

UConn researcher Bryan Huey has uncovered new information about the kinetic properties of multiferroic materials that could be a key breakthrough for scientists looking to create a new generation of low-energy, ...

Particle physicists discuss JUNO neutrino experiment

Jan 28, 2015

The construction of the facilities for the JUNO neutrino experiment has been initiated with an official groundbreaking ceremony near the south Chinese city of Jiangmen. Involved in the Jiangmen Underground ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.