Argonne's nuclear energy research moves toward greater reliance on computer simulation

Nov 26, 2007

The U.S. Department of Energy’s Argonne National Laboratory is taking its nuclear energy research into new territory – virtual territory that is.

With the recent arrival of the new IBM Blue Gene/P and the lab’s development of advanced computer models, Argonne has a critical role in making it possible to burn repeatedly nuclear fuel that now sits as waste, thus closing the nuclear fuel cycle and reducing the risk of nuclear proliferation.

The move toward greater reliance on computer simulation and modeling to conduct nuclear energy research is a progressive trend seen in other areas of scientific research supported by DOE.

"High-speed supercomputers are increasingly tackling difficult problems that could once be addressed only in a laboratory setting," Argonne Director Robert Rosner said.

"The traditional approach to developing nuclear energy technologies is to do a bunch of experiments to demonstrate a process or reaction," said Mark Peters, deputy to the assistant laboratory director of applied science and technology and Argonne’s program manager for the Global Nuclear Energy Partnership. "What Argonne is doing is creating a set of integrated models that demonstrate and validate new technologies, using a smaller number of experiments."

Moreover, "advanced simulation can greatly reduce facilities' costs by allowing us to better identify and target the physical experiments which underlie their design," said Andrew Siegel, a computational scientist at Argonne and the lab’s nuclear simulation project leader.

Siegel and a team of Argonne computational scientists are in the throes of refining computer codes that will eventually be used to conduct the underlying scientific research that will support the development of next generation nuclear systems such as advanced fast reactors, Siegel said. "We will use advanced simulation to improve and optimize the design and safety of advanced fast reactors," he said.

The Sodium Fast Reactor (SFR) design, which was born at Argonne, is a key part of President Bush’s Global Nuclear Energy Partnership, a strategy that will significantly reduce the radioactivity and volume of waste requiring disposal and reduce the risk of nuclear proliferation. SFR designs are safe, capable of reducing the volume and toxicity of nuclear waste, and economically competitive with other electricity sources.

Using internal lab funding initially and GNEP funding more recently, Argonne computational scientists are designing a modern suite of tools called SHARP – Simulation-based High-efficiency Reactor Prototyping, Siegel said. The SHARP toolkit is a collection of individual software components that digitally mimic the physical processes that occur in a nuclear reactor core, including neutron transport, thermal hydraulics and fuel and structure behavior, Siegel explained.

SHARP has been developed to fully leverage Argonne’s new Advanced Leadership Computing Facility, which is made up of the Blue Gene/P, an IBM computer that is designed to operate at a sustained rate of 1-petaflop per second and capable of reaching speeds of 3 petaflops.

SHARP will build upon and may eventually replace existing computer codes that are used to conduct safety evaluations of today’s portfolio of aging nuclear power reactors. Furthermore, those older codes, while adequate for evaluating the scoping designs of next generation reactors, are not as well-equipped to validate the performance of new reactor concepts now under design, Siegel said. A simulation tool like SHARP, which is being written specifically to test SFR design concepts, have the potential to shave off millions of dollars in reactor design development and construction, he said.

The kind of modeling and simulation work taking place at Argonne in support of the development of advanced nuclear energy systems is not by accident. "We see Argonne as the one place that can pull off the creation of advanced simulation tools that will be able to successfully replace some types of experiments," Siegel said.

The reason: Argonne has the biggest concentration of scientists involved in fast reactor design and fuel reprocessing technologies – expertise that is essential to refining SFR design concepts. "This is the center of brain power for nuclear energy research," Siegel said. Moreover, Argonne’s nuclear engineers and chemical engineers have already been collaborating with the lab’s computer scientists to develop precise computer simulations of the process of physical changes that would occur in an SFR, as well as other important aspects of the nuclear fuel cycle (e.g., separations and processing technologies).

Source: Argonne National Laboratory

Explore further: Computer-assisted authoring tools help to create complex interactive narratives

add to favorites email to friend print save as pdf

Related Stories

Study shows troubling rise in use of animals in experiments

7 hours ago

Despite industry claims of reduced animal use as well as federal laws and policies aimed at reducing the use of animals, the number of animals used in leading U.S. laboratories increased a staggering 73 percent from 1997 ...

NY surveying banks on cyber security defenses

9 hours ago

(AP)—New York financial regulators are considering tougher cyber security requirements for banks to mandate more complex computer sign-ins and certifications from the contractors of their cyber defenses, the state's top ...

Life-saving train design is rarely used

10 hours ago

(AP)—Nearly a decade ago, the U.S. secretary of transportation stood at the site of a horrendous commuter train crash near downtown Los Angeles and called for the adoption of a new train car design that ...

Climate change may flatten famed surfing waves

10 hours ago

On a summer day in 1885, three Hawaiian princes surfed at the mouth of the San Lorenzo River on crudely constructed boards made from coastal redwoods, bringing the sport to the North American mainland.

Recommended for you

New paper focuses on degree centrality in networks

Feb 26, 2015

Social networks such as Facebook, LinkedIn and Twitter play an increasingly central role in our lives. Centrality is also an important concept in the theory of social networks. Centrality of an individual, called a "node" ...

Linguists tackle computational analysis of grammar

Feb 26, 2015

Children don't have to be told that "cat" and "cats" are variants of the same word—they pick it up just by listening. To a computer, though, they're as different as, well, cats and dogs. Yet it's computers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.