Europe's Galileo signals used for ocean remote sensing in space

Nov 23, 2007

Surrey Satellite Technology Ltd and the University of Surrey have succeeded in detecting a weakly reflected Galileo signal off the ocean surface using the GPS Reflectometry Experiment on one of SSTL’s small satellites, UK-DMC. The reflection was received off the North coast of Australia on 4th November 2007, and the shape of the reflection gives an indication of the ocean roughness, and hence the weather at that place and time (where the wind speed was around 22 km/h, or 14 mph).

The GPS Reflectometry Experiment was carried into space on the British remote sensing satellite UK-DMC launched in 2003. The experiment was a pioneering demonstration that GPS reflections could be used as a means to determining the roughness of the ocean, using a method called ‘bistatic radar’ or ‘forward scatterometry’. Unlike other radar remote sensing techniques, no transmitter is required as GPS satellites are already broadcasting predictable signals to the Earth 24 hours a day. A satellite dedicated to GPS reflectometry would only therefore need to carry a modified GPS receiver and an antenna, which could potentially be accommodated on a tiny 10 kg satellite platform at a low cost.

GIOVE-A, the first Galileo demonstration satellite, also coincidentally built by SSTL was commissioned by the European Space Agency and has been transmitting prototype Galileo signals since its launch in December 2005. While the orbiting experiment on UK-DMC is not optimised for Galileo signals, enough of the reflected signal energy was received to allow the detection and plotting of the weak signal from a short 20 second data collection by a PhD student at the University of Surrey, Philip Jales.

Dr Martin Unwin, head of the GNSS/GPS team in SSTL, commented: "This is an important achievement in the field of remote sensing, and shows the potential offered by Galileo for scientific purposes. Signals from Galileo in conjunction with those from GPS, and the Russian and Chinese systems, Glonass and Compass, can all be used as part of a new tool for ocean sensing. A constellation of small satellites could be deployed at a low cost to take measurements over the oceans where there are large gaps in forecast knowledge at present.

More navigation satellites mean more measurements, and some the future high bandwidth signals transmitted by Galileo in particular will enable higher resolution measurements of special interest to scientists, for example, in resolving wave heights. An improved measurement system in space such as this could be used to warn mariners of storms, and as an input towards global climate change models, and potentially even to detect Tsunamis."

The UK-DMC Reflectometry Experiment has also previously been used to detect GPS signals reflected off ice and, surprisingly, off dry land. The value of these measurements has yet to be fully explored, but they may be used as inputs for climate modelling.

A future revision of the experiment, the ‘GNSS Reflectometry Instrument’ is now being designed at Surrey with a view to a flight on a future satellite mission. It is being designed specifically to receive Galileo signals as well as those from GPS, with the intention of real time processing. "The sooner Galileo is up and transmitting the better," said Dr Unwin.

Source: University of Surrey

Explore further: Comet dust—planet Mercury's 'invisible paint'

Related Stories

Europe sat-nav launch glitch linked to frozen pipe

Oct 01, 2014

A frozen fuel pipe in the upper stage of a Soyuz launcher likely caused the failure last month to place two European navigation satellites in orbit, a source close to the inquiry said Wednesday.

Two Galileo satellites lose their way

Aug 23, 2014

Two European Galileo satellites launched as part of a navigation system designed to rival GPS have failed to locate their intended orbit, launch firm Arianespace said Saturday.

Recommended for you

Cassini: Return to Rhea

7 hours ago

After a couple of years in high-inclination orbits that limited its ability to encounter Saturn's moons, NASA's Cassini spacecraft returned to Saturn's equatorial plane in March 2015.

Comet dust—planet Mercury's 'invisible paint'

15 hours ago

A team of scientists has a new explanation for the planet Mercury's dark, barely reflective surface. In a paper published in Nature Geoscience, the researchers suggest that a steady dusting of carbon from p ...

It's 'full spin ahead' for NASA soil moisture mapper

18 hours ago

The 20-foot (6-meter) "golden lasso" reflector antenna atop NASA's new Soil Moisture Active Passive (SMAP) observatory is now ready to wrangle up high-resolution global soil moisture data, following the successful ...

What drives the solar cycle?

18 hours ago

You can be thankful that we bask in the glow of a relatively placid star. Currently about halfway along its 10 billion year career on the Main Sequence, our sun fuses hydrogen into helium in a battle against ...

MESSENGER completes 4,000th orbit of Mercury

18 hours ago

On March 25, the MESSENGER spacecraft completed its 4,000th orbit of Mercury, and the lowest point in its orbit continues to move closer to the planet than ever before. The orbital phase of the MESSENGER ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.