Why you remember names and ski slopes

Nov 21, 2007

When you meet your boss's husband, Harvey, at the office holiday party, then bump into him an hour later over the onion dip, will you remember his name? Yes, thanks to a nifty protein in your brain called kalirin-7.

Researchers at Northwestern University's Feinberg School of Medicine have discovered the brain protein kalirin is critical for helping you learn and remember what you learned.

Previous studies by other researchers found that kalirin levels are reduced in brains of people with diseases like Alzheimer's and schizophrenia. Thus, the discovery of kalirin's role in learning offers new insight into the pathophysiology of these disorders.

"Identifying the key role of this protein in learning and memory makes it a new target for future drug therapy to treat or delay the progression of these diseases," said Peter Penzes, lead author of the study and assistant professor of physiology at the Feinberg School. Penzes studied the brains of laboratory rats which are similar to human brains.

The study will be published November 21 in the journal Neuron.

Kalirin behaves like a personal trainer for your memory. When you learn something new, kalirin bulks up the synaptic spines in your brain -- which resemble tiny, white mushrooms. The spines grow bigger and stronger the more you repeat the lesson. It works the same whether you're learning a new cell phone number, skiing a new double black diamond slope or testing a pumpkin cheesecake recipe.

Synaptic spines are the sites in the brain where neurons (brain cells) talk to each other. "If these sites are bigger, the communication is better," Penzes said. "A synapse is like a volume dial between two cells. If you turn up the volume, communication is better. Kalirin makes the synaptic spines grow."

Kalirin's role in learning and memory help explain why continued intellectual activity and learning delays cognitive decline as people grow older. "It's important to keep learning so your synapses stay healthy," Penzes said.

Source: Northwestern University

Explore further: Ultrasound enhancement provides clarity to damaged tendons, ligaments

add to favorites email to friend print save as pdf

Related Stories

Molecular 'foreman' discovered for brain wiring

Nov 21, 2007

Researchers have identified a master regulatory molecule that is responsible for triggering the remodeling of neuronal connections that is critical for learning. Malfunctioning of the connection-remodeling machinery that ...

Recommended for you

A better way to track emerging cell therapies using MRIs

Sep 19, 2014

Cellular therapeutics – using intact cells to treat and cure disease – is a hugely promising new approach in medicine but it is hindered by the inability of doctors and scientists to effectively track the movements, destination ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

saucerfreak2012
not rated yet Nov 21, 2007
Would you like to share with the rest of the class which aminos make it up?