Why you remember names and ski slopes

Nov 21, 2007

When you meet your boss's husband, Harvey, at the office holiday party, then bump into him an hour later over the onion dip, will you remember his name? Yes, thanks to a nifty protein in your brain called kalirin-7.

Researchers at Northwestern University's Feinberg School of Medicine have discovered the brain protein kalirin is critical for helping you learn and remember what you learned.

Previous studies by other researchers found that kalirin levels are reduced in brains of people with diseases like Alzheimer's and schizophrenia. Thus, the discovery of kalirin's role in learning offers new insight into the pathophysiology of these disorders.

"Identifying the key role of this protein in learning and memory makes it a new target for future drug therapy to treat or delay the progression of these diseases," said Peter Penzes, lead author of the study and assistant professor of physiology at the Feinberg School. Penzes studied the brains of laboratory rats which are similar to human brains.

The study will be published November 21 in the journal Neuron.

Kalirin behaves like a personal trainer for your memory. When you learn something new, kalirin bulks up the synaptic spines in your brain -- which resemble tiny, white mushrooms. The spines grow bigger and stronger the more you repeat the lesson. It works the same whether you're learning a new cell phone number, skiing a new double black diamond slope or testing a pumpkin cheesecake recipe.

Synaptic spines are the sites in the brain where neurons (brain cells) talk to each other. "If these sites are bigger, the communication is better," Penzes said. "A synapse is like a volume dial between two cells. If you turn up the volume, communication is better. Kalirin makes the synaptic spines grow."

Kalirin's role in learning and memory help explain why continued intellectual activity and learning delays cognitive decline as people grow older. "It's important to keep learning so your synapses stay healthy," Penzes said.

Source: Northwestern University

Explore further: Infant cooing, babbling linked to hearing ability

add to favorites email to friend print save as pdf

Related Stories

Molecular 'foreman' discovered for brain wiring

Nov 21, 2007

Researchers have identified a master regulatory molecule that is responsible for triggering the remodeling of neuronal connections that is critical for learning. Malfunctioning of the connection-remodeling machinery that ...

Recommended for you

Infant cooing, babbling linked to hearing ability

7 hours ago

Infants' vocalizations throughout the first year follow a set of predictable steps from crying and cooing to forming syllables and first words. However, previous research had not addressed how the amount ...

Developing 'tissue chip' to screen neurological toxins

8 hours ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

12 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

14 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

saucerfreak2012
not rated yet Nov 21, 2007
Would you like to share with the rest of the class which aminos make it up?