Cancer drug works by overactivating cancer gene

Nov 20, 2007

University of Michigan Comprehensive Cancer Center researchers have discovered that bortezomib, a promising cancer drug, is able to strike a blow against melanoma tumor cells by revving up the action of a cancer-promoting gene.

They say the laboratory-based findings suggest a novel treatment strategy that might someday prove effective against many types of cancer: Push cancer cells into overdrive, so that they self-destruct.

The U-M scientists found that bortezomib, a drug approved by the FDA to treat advanced multiple myeloma, is able to selectively inhibit melanoma tumor cells because it causes the c-MYC oncogene to overproduce a cell-death promoter called NOXA. Their results place c-MYC and NOXA, well studied among cancer researchers, in a new light. The study appears online ahead of print in the Proceedings of the National Academy of Sciences.

“Our data suggest a different approach to treat cancer,” says Maria S. Soengas, Ph.D., the senior author of the study. Soengas is an assistant professor of dermatology at the U-M Medical School and a member of the U-M Comprehensive Cancer Center.

Many cancer treatments aim to block specific oncogenes, genes that wreak havoc with the normal signals that dictate when cells multiply and die.

The thinking is that if oncogenes are disabled, cancer cells can’t proliferate uncontrollably and spread. However, scientists know that oncogenes can play dual roles: They can cause tumor cells to rapidly divide, but can also step up programmed cell death, or apoptosis.

Therefore, “an alternative treatment could be to actually exacerbate oncogene function, to promote such a dysregulation of cell cycle progression and activation of apoptotic proteins that tumor cells ultimately die,” says Soengas.

Melanoma tumor cells manage to resist most cancer drugs. For more than 30 years, the prognosis for patients with advanced melanoma has not significantly improved. Soengas likens the melanoma tumor cell’s defenses to a heavy suit of armor that so far has blocked researchers’ attempts to penetrate it. Now it appears that the tumor cells have an enemy within.

In human melanoma cells cultured and manipulated in the laboratory, Soengas and her team have studied bortezomib and other drug candidates to understand their molecular modes of action.

Bortezomib belongs to a class of drugs called proteasome inhibitors that show promise in attacking many types of tumors. But how the drugs direct their biggest punch at tumor cells, with less effect on normal ones, has puzzled scientists – the cell actors they target, proteasomes, are widespread and essential to normal cells.

Soengas and colleagues reported in 2005 that bortezomib appears to combat tumor growth by increasing the activity of a cell-death promoter called NOXA in tumor cells, but not in normal cells. In the new study, the U-M scientists report that the force behind this selective uptick in NOXA, and the resulting cell death, surprisingly turned out to be the oncogene c-MYC.

The discovery of the oncogene’s role in bortezomib’s action has implications for other cancers besides melanoma, says Mikhail Nikiforov, Ph.D., the paper’s first author. The Soengas and Nikiforov groups collaborated to elucidate molecular mechanisms of c-MYC-mediated regulation of NOXA in melanoma and other tumor cell types. Nikiforov is an assistant professor of dermatology at the U-M Medical School and a member of the U-M Comprehensive Cancer Center.

The findings lay the groundwork for more studies to improve bortezomib’s effectiveness in treating cancers and to reduce its toxicity in normal cells, Soengas says.

“Now we can rationally design drugs that enhance bortezomib’s action and favor NOXA production,” she says. “Improvements might make it possible to give lower doses of the drug for a shorter time.”

These improvements to bortezomib treatment, as well as other drugs that could take advantage of the study results, will take years of testing before they can possibly help patients. Soengas and her colleagues are collaborating with other U-M scientists on several projects, including one led by Shaomeng Wang, Ph.D., associate professor of hematology/oncology and pharmacology, to design drugs that will favor the effects of NOXA.

Clinical trials to test bortezomib’s effects on other types of tumors are under way at the U-M and around the country.

Source: University of Michigan

Explore further: Researchers find chemotherapy after bladder cancer surgery improved survival

add to favorites email to friend print save as pdf

Related Stories

New nanogel for drug delivery

Feb 19, 2015

Scientists are interested in using gels to deliver drugs because they can be molded into specific shapes and designed to release their payload over a specified time period. However, current versions aren't ...

Lab-on-a-chip to study single cells

Feb 13, 2015

Scientists at EPFL have developed a new lab-on-a-chip technique to analyze single cells from entire population. The new method, which uses beads and microfluidics can change the way we study mixed populations ...

A first of its kind tool to study the histone code

Feb 10, 2015

University of North Carolina scientists have created a new research tool, based on the fruit fly, to help crack the histone code. This research tool can be used to better understand the function of histone proteins, which ...

End of CRISPR-CAS9 controversy

Feb 10, 2015

The IBS research team (Center for Genome Engineering) has successfully confirmed that CRISPR-Cas9 has accurate on-target effects in human cells, through joint research with the Seoul National University College ...

Recommended for you

Deodorant use ok for radiotherapy patients

23 hours ago

Women undergoing radiotherapy for breast cancer can use deodorant without fear of increased underarm skin reaction, pain, itching or burning, research suggests.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.