Brain compensatory mechanisms enhance the recovery from spinal cord injury

Nov 15, 2007

A research team led by Tadashi Isa, a professor at the Japanese National Institute for Physiological Sciences, NIPS (SEIRIKEN), and Dr. Yukio Nishimura (University of Washington, Seattle), have found that brain compensatory mechanisms contribute to recovery from spinal cord injury. This study was conducted in collaboration with Hamamatsu Photonics (Dr. Hideo Tsukada) and RIKEN (Dr. Hirotaka Onoe).

It was supported by the Japan Science and Technology Agency (JST). The team reports their findings on November 16, 2007 in Science magazine.

The basis of neurorehabilitation relies on the concept that training recruits remaining intact neuronal systems to compensate for partial injury to the spinal cord or brain. Until recently, the neuronal basis of these compensatory mechanisms has been poorly understood.

In previous work, the research team showed that finger dexterity could recover with rehabilitation following transection of the direct cortico-motoneuronal pathway in the Japanese macaque monkey. In the current study, brain imaging (PET scan) indicated that bilateral primary motor cortex contributes to early-stage recovery of finger movement.

During late-stage recovery, more extensive regions of the contralesional primary motor cortex and bilateral premotor cortex were activated to compensate for impaired finger movements. Pharmacological inactivation of these regions during rehabilitation slowed recovery. These results suggest that brain compensatory mechanisms actively enhance recovery from spinal cord injury.

Professor Isa explains that this study is the first to show that brain compensatory mechanisms contribute to recovery following injury to the central nervous system. The functional plasticity of the brain compensates for lost function and enhances recovery from injury. "This study reinforces our current understanding of neurorehabilitation and may lead to new rehabilitation strategies for patients with spinal cord injuries or any kind of brain damage", said Professor Isa.

Source: National Institute for Physiological Sciences

Explore further: Tackling illness in premature babies with genetics and artificial noses

add to favorites email to friend print save as pdf

Related Stories

Researchers regenerate axons necessary for voluntary movement

Apr 06, 2009

For the first time, researchers have clearly shown regeneration of a critical type of nerve fiber that travels between the brain and the spinal cord and which is required for voluntary movement. The regeneration was accomplished ...

Supported accommodation with a SmILE

Sep 27, 2013

A worldwide study into best practice accommodation design for people living with an acquired brain or spinal cord injury has been released today.

Giffords awake, communicates after skull surgery

May 19, 2011

(AP) -- A day after surgery to repair her skull, Arizona Rep. Gabrielle Giffords' doctor has dubbed her "gorgeous Gabby," encouraged by how she looks and is communicating after an operation considered a major ...

Fish offer clues to spinal cord renewal

Apr 06, 2011

(PhysOrg.com) -- Spinal cord injuries are devastating, but fish may be the key to finding a cure.Research shows adult fish that sustain a spinal cord injury have the miraculous ability to not only regenerate ...

Recommended for you

New pain relief targets discovered

8 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

9 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

12 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...