New method for the production of defined microparticles with 3-D nanopatterns

Nov 15, 2007

Many scientists are working feverishly to develop reliable but simple methods for the production of tiny particles with defined size and shape that are covered with special regular patterns in two or three dimensions and at both the nano- and the microscale. These miniature objects have countless applications in modern technology, from diagnostic systems to the generation of artificial tissues to improved data storage.

A team headed by Edwin L. Thomas and Patrick S. Doyle at MIT in Cambridge, Massachusetts (USA) has now developed a new method for the large-scale synthesis of three-dimensionally patterned polymer particles with morphological characteristics in the submicrometer range. As described in the journal Angewandte Chemie, with the use of stop-flow interference lithography, the team has even been able to produce Janus particles, microparticles with two chemically different hemispheres.

“Our new method is a combination of phase mask interference lithography and mirofluidic flow lithography, unifying the strengths of these two methods,” explain the researchers. Liquid precursors of a polymer whose formation is induced by light are introduced into a microfluidic system (a system of channels that are just a few micrometers wide). The bottom portion of the device is a phase mask with a periodic surface structure.

This arrangement is irradiated through a transparency mask that defines the shape of the resulting particles. In a test sample these were triangles with sides of 60 µm. Once the parallel light rays pass through the strictly periodic surface structure of the phase mask, the result is a complex three-dimensional distribution of light intensity within the liquid (interference).

In regions of high intensity, the polymer precursors are cross-linked to form three-dimensional structures in a solid hydrogel. In this way, the researchers were able to give the triangular particles a knobby, lattice-like structure.

Because this method works continuously, it can attain a very high throughput: Liquid flows in and polymerizes to form particles that are immediately rinsed away when the next portion of liquid follows—all in less than a second. In contrast to other techniques, the liquid does not need to be deposited in an even layer on a support and developed stepwise.

In addition, within a microchannel, it is possible to allow two different liquids to flow side by side without mixing. If the transparency mask is adjusted so that the light irradiates a region around the boundary between the two liquids, the process results in Janus particles with two chemically different hemispheres.

Citation: Edwin L. Thomas, A Route to Three-Dimensional Structures in a Microfluidic Device: Stop-Flow Interference Lithography, Angewandte Chemie International Edition 2007, 46, No. 47, 9027–9031, doi: 10.1002/anie.200703525

Source: Wiley

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

ACEs are high with space station colloidal research

Aug 25, 2014

One global marketer took to space to find a way to be leaner and greener back on Earth. For Procter & Gamble (P&G), product innovation and improvement relied on use of the International Space Station (ISS) ...

Rounding up the BCATs on the Space Station

May 13, 2014

Although it may not be herding cats exactly, all the NASA-supported Binary Colloidal Alloy Tests (BCAT) studies have ended on the International Space Station, and the experimental samples are being rounded ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.