Are there rearrangement hot spots in the human genome?

Nov 09, 2007

The debate over the validity of genomic rearrangement “hotspots” has its most recent addition in a new theory put forth by researchers at the University of California San Diego. The study, published on November 9 in PLoS Computational Biology, holds that there are indeed rearrangement hotspots in the human genome.

Doctors Max Alekseyev and Pavel Pevzner developed a theory for analyzing complex rearrangements (including transpositions) which demonstrates that even if transpositions were a dominant evolutionary force, there are still rearrangement hotspots in mammalian genomes.

In 1970 the random breakage model (RBM) was proposed by Susumo Ohno, and later formalized by Nadeau and Taylor in 1984. This model postulates that rearrangements are “random,” and thus there are no rearrangement hotspots in mammalian genomes. Biologists largely embraced the model as it held such predictive powers.

However, in 2003 the model was refuted by Pevzner and Tesler, who suggested an alternative fragile breakage model (FBM) of chromosome evolution. FBM implies that the human genome is a mosaic of solid regions with low propensity for rearrangements and fragile regions where rearrangement hotspots reside. The rebuttal of RBM resulted in a rebuttal of the rebuttal, and a scientific divide was begun.

Most recent studies support the existence of rearrangement hotspots, but some researchers still uphold the RBM model. This study represents a major advance in the debate.

Source: Public Library of Science

Explore further: Assortativity signatures of transcription factor networks contribute to robustness

add to favorites email to friend print save as pdf

Related Stories

Genomic fault zones come and go

Nov 30, 2010

The fragile regions in mammalian genomes that are thought to play a key role in evolution go through a "birth and death" process, according to new bioinformatics research performed at the University of California, ...

Recommended for you

Mutation disables innate immune system

10 hours ago

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments : 0