Researchers identify molecules with interesting anti-clotting properties

Nov 08, 2007
Researchers identify molecules with interesting anti-clotting properties
An image of the enzyme that is targeted by the sulfated DHPs, the new molecules designed by Desai's team. Credit: Umesh R. Desai, PhD/VCU

Virginia Commonwealth University researchers have discovered a new mechanism to inhibit key enzymes that play a major role in clotting disorders, which could lead to novel therapies to treat clots in the lungs and those localized deep in the body in areas such as the legs.

Antithrombotic disorders occur when the effect of thrombin, a protein involved in coagulation, is inhibited, rendering blood unable to clot effectively. These disorders are considered common and can be fatal. Additionally, clotting disorders arise due to complications from other diseases like cancer. Although there are a number of anticoagulation drugs available -- heparins and warfarins -- some patients develop adverse reactions to the therapy and must be closely monitored.

In a study published in the Nov. 2 issue of the Journal of Biological Chemistry, Umesh R. Desai, Ph.D., a professor in the Department of Medicinal Chemistry at the VCU School of Pharmacy, lead investigator on the study, reported on the design of three highly complex molecules with unique anticoagulant properties that were prepared in the laboratory. According Desai, these molecules, known as sulfated DHPs, are completely different from anticoagulants used in the clinic today including heparins, coumarins and hirudins.

The team demonstrated that the molecules were able to inhibit the ability of critical enzymes involved with the cascade of events involved in blood clotting. Specifically, the molecules prevent the normal action of thrombin and factor Xa, which are the critical enzymes targeted by current anticoagulant therapy.

“We have identified a new mechanism that may prevent clotting. This approach may result in new drugs for the treatment of thrombotic disorders, including pulmonary embolism, deep vein thrombosis and more,” said Desai.

“The molecules we have designed may possess several advantages compared to currently available anticoagulation drugs,” he said.

“For example, new anti-clotting therapies may result in reduced hospital stays for patients, fewer side effects, and possibly an overall cost reduction in therapy because our molecules are likely to be synthesized in an inexpensive manner.”

Desai and his team are now investigating which unit or units in the complex molecule are responsible for the anti-clotting activity.

Source: Virginia Commonwealth University

Explore further: New insights on carbonic acid in water

add to favorites email to friend print save as pdf

Related Stories

Comcast wins more Internet customers, ad sales up

1 hour ago

Comcast Corp.'s third-quarter net income jumped 50 percent in the third quarter, helped by a one-time tax settlement, growth in Internet subscribers and fewer defectors from its cable service.

Helping sweet cherries survive the long haul

1 hour ago

A new study says that cherry producers need to understand new intricacies of the production-harvest-marketing continuum in order to successfully move sweet cherries from growers to end consumers. For example, the Canadian ...

Christian Bale to play Apple's Steve Jobs

1 hour ago

Oscar-winner Christian Bale—best known for his star turn as Batman in the blockbuster "Dark Knight" films—will play Apple co-founder Steve Jobs in an upcoming biopic.

Netflix to stream new online TV series, 'Bloodline'

1 hour ago

Fresh from commercial and critical success with hit shows "House of Cards" and "Orange is the New Black," Netflix on Thursday announced a new online series, "Bloodline," set for release in March.

YEATS protein potential therapeutic target for cancer

1 hour ago

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Recommended for you

World's fastest manufacture of battery electrodes

6 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

6 hours ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

6 hours ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

User comments : 0