How the brain sends eyeballs bouncing

Nov 07, 2007

All vision, including reading this sentence, depends on a constant series of infinitesimal jumps by the eyeball that centers the retina on target objects—words or phrases in the case of reading. Such jumps, or saccades, are critical to vision because only the small central region of the retina, called the fovea, produces the clear image necessary for perception. Such saccades take place several times a second and are generated within a brain region known as the frontal eye field (FEF).

In studies with monkeys, Robert Schafer and Tirin Moore have taken an important step in understanding how circuitry of the FEF generates saccades—with the FEF’s attentional circuitry governing the motor circuitry that produces saccades. The researchers published their findings in the November 8, 2007, issue of the journal Neuron, published by Cell Press.

In a preview of the paper in the same issue of Neuron, Stefan Everling wrote that the researchers’ findings “are exciting, because they demonstrate that attention and action interact more closely in the FEF than previously thought, and they suggest a mechanism by which attention can modulate saccade motor commands.” Everling is at the University of Western Ontario in Canada.

In their experiments, Schafer and Moore took advantage of a well-known optical phenomenon involving the influence of the motion of a drifting grating on saccades that target the grating. The moving grating causes a motion-induced bias of saccades; for example, if the eye makes a saccade to a grating that is drifting upward, that saccade to the grating is biased to land higher than it would if the grating were stationary.

The researchers trained monkeys to shift their gaze to such moving gratings upon command, in return for a juice reward. During the experiments, the researchers used eyetracking to precisely measure the direction of the animals’ gaze. After measuring how the saccades were influenced by the grating motion, the researchers then electrically “microstimulated” the FEF. They then analyzed how such microstimulation affected the saccades to moving gratings.

The researchers said their analyses “indicate that the attentional effects of microstimulation determine the metrics of concurrently planned saccades, causing them to be more strongly influenced by the visual target features.” They wrote that even though the two roles of FEF circuitry—attention and motor—can be experimentally teased apart, “our results suggest that the saccadic role depends on the attentional role to select the features of the visual target and the best movement to foveate it.”

Source: Cell Press

Explore further: 3-D printing offers innovative method to deliver medication

add to favorites email to friend print save as pdf

Related Stories

IOC defends Rio legacy amid green protests

18 hours ago

Ecological protests on Saturday dogged the final day of an International Olympic Committee executive board meeting in Rio as green campaigners slated the choice of a nature reserve to hold the golf event ...

Recommended for you

Team finds key to tuberculosis resistance

3 hours ago

The cascade of events leading to bacterial infection and the immune response is mostly understood. However, the molecular mechanisms underlying the immune response to the bacteria that causes tuberculosis ...

Mutation may cause early loss of sperm supply

4 hours ago

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation ...

No more bleeding for 'iron overload' patients?

6 hours ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

3-D printing offers innovative method to deliver medication

11 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.