Synchrotron radiation illuminates how babies' protective bubble bursts

Nov 07, 2007

Researchers at the University of Reading, School of Pharmacy have developed an important new technique to study one of the most common causes of premature birth and prenatal mortality. The findings are published in the November 7 issue of the online, open-access journal PLoS ONE.

Dr Che Connon, a Research Councils UK Fellow in Stem Cells and Nanomaterials, and his team used a powerful X-ray beam to examine tiny structures within the protective sac - amniotic membrane - which surrounds the developing baby.

This beam can resolve structures far smaller than a light or electron microscope. Furthermore, unlike other more intrusive forms of microscopy, X-ray investigation requires no processing of the tissue before examination, so can produce an accurate measurement of amniotic membrane structure in its normal state.

When the protective sac raptures during labour this is when the mother’s waters burst; if premature rupture occurs it can result in death or mental retardation of the child. Currently premature birth is increasing and 40% are attributed to the early rupture of amniotic membranes. Thus, a better understanding of the rupture process will lead to better treatment, earlier diagnosis and fewer premature deliveries

Dr Connon, an expert in tissue structure, said: “This is of interest to the general public because amniotic membrane rupture is an important stage in the start of labour. More importantly early rupture of the amniotic membranes occurs in up to 20% of all pregnancies worldwide, and is the most common cause of preterm birth, leading to babies dying or having major problems such as cerebral palsy. The paper describes a new breakthrough in understanding the structure of amniotic membranes and how they rupture. Hopefully this will lead to therapies designed to prevent preterm membrane rupture as well.”

“Rupture of amniotic sac has been associated with a weakening of the tissue, but there is very little information available concerning the detailed mechanics of how this actually occurs.”

“We have now identified a regular cross-work arrangement of fibre forming molecules within the amniotic membrane which give the tissue its strength. Furthermore we have detected nanoscale alterations in the molecular arrangement within areas associated with amniotic membrane rupture. These results suggest, for the first time, that it is the loss of this molecular lattice like arrangement that governs the timing of membranes rupture.”

“Therefore, by controlling the amniotic membranes molecular arrangement we believe we can prevent premature rupture and delivery in the future.”

Source: Public Library of Science

Explore further: Testing time for stem cells

add to favorites email to friend print save as pdf

Related Stories

US company sells out of Ebola toys

3 minutes ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

Partial solar eclipse over the U.S. on Thursday, Oct. 23

1 hour ago

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

UN biodiversity meet commits to double funding

23 minutes ago

A UN conference on preserving the earth's dwindling resources wrapped up Friday with governments making a firm commitment to double biodiversity aid to developing countries by 2015.

Recommended for you

Testing time for stem cells

2 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

21 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0