NASA Data May Help Improve Estimates of a Hurricane's Punch

Nov 01, 2007
NASA Data May Help Improve Estimates of a Hurricane's Punch
Scientists could soon have an improved way to estimate the intensity of hurricanes like last year's Ileana, seen here in these images from NASA's CloudSat and Aqua satellites. A promising new technique developed by NASA and university scientists combines cloud data from the two satellites to improve estimates of storm intensity. Image credit: NASA

As Tropical Storm Noel churns off Florida's east coast, NASA and university scientists have announced they have developed a promising new technique for estimating the intensity of tropical cyclones from space. The method could one day supplement existing techniques, assist in designing future tropical cyclone satellite observing systems, and improve disaster preparedness and recovery efforts.

The technique uses NASA satellite data, including simultaneous, accurate measurements of cloud-top temperatures from the Moderate Resolution Imaging Spectroradiometer on NASA's Aqua satellite, and cloud-top height and cloud profiling information from NASA's CloudSat satellite. Both satellites fly in formation as part of NASA's "A-Train" of Earth-observing satellites. This new technique was developed by scientists at NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Colorado State University, Fort Collins, Colo.; and the Massachusetts Institute of Technology, Cambridge, Mass.

Scientists commonly use measurements of a tropical cyclone's maximum sustained winds to define their intensity and gauge their destructive potential. Maximum sustained winds are defined as the one-minute average wind speed at an altitude of 10 meters (33 feet).

The framework used by the team to estimate tropical cyclone intensity was developed by co-author Kerry Emanuel of the Massachusetts Institute of Technology and his colleague Valerie Wong. It requires cloud profiling information from over or near a storm's eye. Of the more than 150 tropical cyclones that CloudSat flew over during its first six months after launch in April 2006, nine of the storm overpasses met this criterion.

The team analyzed NASA satellite data from these nine storms and calculated their peak winds. The estimates were then compared with available weather data, including data from aircraft. Initial results show the technique's estimates agreed with available weather data, and the technique appeared to work better for stronger storms.

Emanuel and Wong's framework measures the intensity of tropical cyclones in relation to the total energy contained in both their eyewalls and the surrounding environment outside the storms, as well as other measurements. By coupling measurements of temperatures and cloud top heights from a storm's eyewall out to its outer regions with an estimated difference in temperature between the sea surface and the storm's cloud tops, a storm's intensity can be estimated.

"Our study represents a unique and first-of-a-kind test of a hurricane intensity theory that had not been verified against real-world data, one that relies on actual satellite data," said lead study author Zhengzhao "Johnny" Luo, now with the City College of New York. "While our analysis is not yet mature enough for this technique to be used operationally, we plan to further refine it as more tropical cyclone data become available."

Meteorological satellites have been used to monitor tropical cyclones since the mid 1960s. Relating measurements of storm intensity to existing satellite data has proven difficult. The primary technique used since the mid 1970s, developed by Vernon Dvorak of the National Oceanic and Atmospheric Administration, estimates a storm's maximum sustained winds by looking for recognizable patterns of clouds in visible and infrared satellite images and calibrating them against reconnaissance aircraft data.

CloudSat Principal Investigator and study co-author Graeme Stephens of Colorado State University, Fort Collins, Colo., said the latest results show the value of being able to look inside storms to reveal their inner structure. This information is unique to CloudSat. "Current hurricane intensity estimating techniques are generally effective but have higher wind speed errors than scientists would like," he said. "This new technique may reduce those error rates."

Results of the study are published in the September issue of the Institute of Electrical and Electronics Engineers publication, Geoscience and Remote Sensing Letters.

Source: NASA

Explore further: A 5.3-million-year record of sea level and temperature

add to favorites email to friend print save as pdf

Related Stories

Students on field course bag new spider species

Mar 27, 2014

As a spin-off (pun intended) of their Tropical Biodiversity course in Malaysian Borneo, a team of biology students discover a new spider species, build a makeshift taxonomy lab, write a joint publication ...

Recommended for you

Melting during cooling period

6 hours ago

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

Warm US West, cold East: A 4,000-year pattern

9 hours ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

New study outlines 'water world' theory of life's origins

11 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

User comments : 0

More news stories

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...