Scientists discover new way to make water

Oct 31, 2007

In a familiar high-school chemistry demonstration, an instructor first uses electricity to split liquid water into its constituent gases, hydrogen and oxygen. Then, by combining the two gases and igniting them with a spark, the instructor changes the gases back into water with a loud pop.

Scientists at the University of Illinois have discovered a new way to make water, and without the pop. Not only can they make water from unlikely starting materials, such as alcohols, their work could also lead to better catalysts and less expensive fuel cells.

“We found that unconventional metal hydrides can be used for a chemical process called oxygen reduction, which is an essential part of the process of making water,” said Zachariah Heiden, a doctoral student and lead author of a paper accepted for publication in the Journal of the American Chemical Society.

A water molecule (formally known as dihydrogen monoxide) is composed of two hydrogen atoms and one oxygen atom. But you can’t simply take two hydrogen atoms and stick them onto an oxygen atom. The actual reaction to make water is a bit more complicated: 2H2 + O2 = 2H2O + Energy.

In English, the equation says: To produce two molecules of water (H2O), two molecules of diatomic hydrogen (H2) must be combined with one molecule of diatomic oxygen (O2). Energy will be released in the process.

“This reaction (2H2 + O2 = 2H2O + Energy) has been known for two centuries, but until now no one has made it work in a homogeneous solution,” said Thomas Rauchfuss, a U. of I. professor of chemistry and the paper’s corresponding author.

The well-known reaction also describes what happens inside a hydrogen fuel cell.

In a typical fuel cell, the diatomic hydrogen gas enters one side of the cell, diatomic oxygen gas enters the other side. The hydrogen molecules lose their electrons and become positively charged through a process called oxidation, while the oxygen molecules gain four electrons and become negatively charged through a process called reduction. The negatively charged oxygen ions combine with positively charged hydrogen ions to form water and release electrical energy.

The “difficult side” of the fuel cell is the oxygen reduction reaction, not the hydrogen oxidation reaction, Rauchfuss said. “We found, however, that new catalysts for oxygen reduction could also lead to new chemical means for hydrogen oxidation.”

Rauchfuss and Heiden recently investigated a relatively new generation of transfer hydrogenation catalysts for use as unconventional metal hydrides for oxygen reduction.

In their JACS paper, the researchers focus exclusively on the oxidative reactivity of iridium-based transfer hydogenation catalysts in a homogenous, non-aqueous solution. They found the iridium complex effects both the oxidation of alcohols, and the reduction of the oxygen.

“Most compounds react with either hydrogen or oxygen, but this catalyst reacts with both,” Heiden said. “It reacts with hydrogen to form a hydride, and then reacts with oxygen to make water; and it does this in a homogeneous, non-aqueous solvent.”

The new catalysts could lead to eventual development of more efficient hydrogen fuel cells, substantially lowering their cost, Heiden said.

Source: University of Illinois at Urbana-Champaign

Explore further: Four billion-year-old chemistry in cells today

add to favorites email to friend print save as pdf

Related Stories

Fuel cells for powering homes

Jul 16, 2014

One of the applications that fuel cells may have is the supplying of homes with electrical power. When considering applications of this type that call for greater power, a research group in the UPV/EHU's Department of Mineralogy ...

Water molecules favor negative charges

Jul 16, 2014

(Phys.org) —In the presence of charged substances, H2O molecules favor associating with elements with a negative electrical charge rather than a positive electric charge. EPFL researchers have published ...

Improving the cost and efficiency of renewable energy storage

Jul 17, 2014

A major challenge in renewable energy is storage. A common approach is a reaction that splits water into oxygen and hydrogen, and uses the hydrogen as a fuel to store energy. The efficiency of 'water splitting' depends heavily ...

Directly visualizing hydrogen bonds

Jul 15, 2014

Using a newly developed, ultrafast femtosecond infrared light source, chemists at the University of Chicago have been able to directly visualize the coordinated vibrations between hydrogen-bonded molecules—the ...

Recommended for you

A new approach to creating organic zeolites

22 hours ago

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0