Scientists discover new way to make water

Oct 31, 2007

In a familiar high-school chemistry demonstration, an instructor first uses electricity to split liquid water into its constituent gases, hydrogen and oxygen. Then, by combining the two gases and igniting them with a spark, the instructor changes the gases back into water with a loud pop.

Scientists at the University of Illinois have discovered a new way to make water, and without the pop. Not only can they make water from unlikely starting materials, such as alcohols, their work could also lead to better catalysts and less expensive fuel cells.

“We found that unconventional metal hydrides can be used for a chemical process called oxygen reduction, which is an essential part of the process of making water,” said Zachariah Heiden, a doctoral student and lead author of a paper accepted for publication in the Journal of the American Chemical Society.

A water molecule (formally known as dihydrogen monoxide) is composed of two hydrogen atoms and one oxygen atom. But you can’t simply take two hydrogen atoms and stick them onto an oxygen atom. The actual reaction to make water is a bit more complicated: 2H2 + O2 = 2H2O + Energy.

In English, the equation says: To produce two molecules of water (H2O), two molecules of diatomic hydrogen (H2) must be combined with one molecule of diatomic oxygen (O2). Energy will be released in the process.

“This reaction (2H2 + O2 = 2H2O + Energy) has been known for two centuries, but until now no one has made it work in a homogeneous solution,” said Thomas Rauchfuss, a U. of I. professor of chemistry and the paper’s corresponding author.

The well-known reaction also describes what happens inside a hydrogen fuel cell.

In a typical fuel cell, the diatomic hydrogen gas enters one side of the cell, diatomic oxygen gas enters the other side. The hydrogen molecules lose their electrons and become positively charged through a process called oxidation, while the oxygen molecules gain four electrons and become negatively charged through a process called reduction. The negatively charged oxygen ions combine with positively charged hydrogen ions to form water and release electrical energy.

The “difficult side” of the fuel cell is the oxygen reduction reaction, not the hydrogen oxidation reaction, Rauchfuss said. “We found, however, that new catalysts for oxygen reduction could also lead to new chemical means for hydrogen oxidation.”

Rauchfuss and Heiden recently investigated a relatively new generation of transfer hydrogenation catalysts for use as unconventional metal hydrides for oxygen reduction.

In their JACS paper, the researchers focus exclusively on the oxidative reactivity of iridium-based transfer hydogenation catalysts in a homogenous, non-aqueous solution. They found the iridium complex effects both the oxidation of alcohols, and the reduction of the oxygen.

“Most compounds react with either hydrogen or oxygen, but this catalyst reacts with both,” Heiden said. “It reacts with hydrogen to form a hydride, and then reacts with oxygen to make water; and it does this in a homogeneous, non-aqueous solvent.”

The new catalysts could lead to eventual development of more efficient hydrogen fuel cells, substantially lowering their cost, Heiden said.

Source: University of Illinois at Urbana-Champaign

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

Australia's first fuel cell bicycle

Sep 08, 2014

UNSW researchers have built an Australian-first bicycle that can take riders up to 125 kilometres on a single battery charge and $2 of hydrogen.

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0