Transparent Zebrafish Help Researchers Track Breast Cancer

Oct 29, 2007
Transparent Zebrafish Help Researchers Track Breast Cancer
VEGF secreting human tumor cells inducing angiogenesis within the Zebrafish body wall. Tumor cells are shown in red (DsRed), fish blood vessels are shown in green (GFP).

What if doctors could peer through a patient’s skin and see a cancer tumor growing? They’d be able to study how tumor cells migrate: how they look, how they interact with the blood system to find nourishment to grow and spread through the body.

Scientists at the University of California, San Diego (UCSD) School of Medicine can’t look through human skin. But a small, tropical minnow fish common to aquariums has given UCSD researchers a window for viewing live, human cancer cells in action. Working with transparent zebrafish to study one of the most aggressive forms of cancer, inflammatory breast cancer, has led to their discovery of how two proteins interact in the metastasis of breast cancer.

The study led by Richard Klemke, Ph.D., professor of pathology at UCSD School of Medicine and the UCSD Moores Cancer Center, will be published in the Proceedings of the National Academy of Sciences online edition the week of October 22-26.

“By watching human breast cancer cells in real time in the live transgenic zebrafish, we were able to determine that two proteins are required in order for breast tumor cells to complete the most critical step of metastasis – entering the blood vessels,” said Konstantin Stoletov, Ph.D., of the department of pathology at the UC-San Diego School of Medicine, first author of the paper.

The scientists discovered that two proteins work together to allow cancerous breast tumors to enter the blood vessels, thus promoting metastasis. The first is vascular endothelial growth factor (VEGF), a protein made by cancerous cells that stimulates new blood vessel formation, or angiogenesis. The second is a small protein called RhoC that is involved in cell movement or migration, and is overexpressed in highly metastatic forms of breast cancer.

The researchers found that neither VEGF nor RhoC alone interact with blood vessels to allow the cancerous tumor to enter the blood vessels, or intravasate. “But together, they promote rapid intravasation,” said Stoletov.

Inflammatory breast cancer (IBC) is the deadliest form of human breast cancer, with fewer than half of those diagnosed today expected to live five years. The UCSD team developed an immuno-suppressed zebrafish that expresses green fluorescent protein (commonly known as GFP) only in its blood vessels, allowing scientists to view the tumor-induced blood vessel formation, or angiogenesis. They injected the fish with IBC cells that were tagged in different colors, in order to study the very rapid tumor progression.

The parental cancer cells were tagged in blue, and the migrating cells that overexpressed RhoC in red. Over several weeks, the researchers were able to watch the cancer’s progression using high-resolution, multi-color confocal microscopy.

The scientists discovered that RhoC induces an amoeboid-like mode of invasion, in which the cancerous cells move by means of temporary projections or ‘false feet.’ They also found that secretion of VEGF was required in order for the cancer cells to penetrate and enter the blood vessel.

“In later stages of the cancerous tumor, the VEGF induces rapid formation of irregular, leaky blood vessels,” said Stoletov. “We discovered that intravasation requires the secretion of VEGF, which disrupts the blood vessel wall, creating small openings that allow the tumor cells to penetrate and enter.”

Finding a way to suppress VEGF, thus inhibiting the growth of “leaky” blood vessels, could stop the movement of cancer cells into the blood vessels and the tumor’s subsequent metastasis, according to Klemke.

The results provide novel insight into mechanisms of cancer-cell invasion and intravasation, showing how RhoC and VEGF cooperate to facilitate cell metastasis in living tissues. The transparency of the fish also allowed the researchers to image and analyze, in three dimensions, images of a potential anti-cancer compound that inhibits the VEGF receptor. They found that this inhibitor prevents formation of the vascular openings, thus inhibiting intravasation.

Source: University of California, San Diego

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Russia turns back clocks to permanent Winter Time

4 hours ago

Russia on Sunday is set to turn back its clocks to winter time permanently in a move backed by President Vladimir Putin, reversing a three-year experiment with non-stop summer time that proved highly unpopular.

UN climate talks shuffle to a close in Bonn

4 hours ago

Concern was high at a perceived lack of urgency as UN climate negotiations shuffled towards a close in Bonn on Saturday with just 14 months left to finalise a new, global pact.

Microsoft beefs up security protection in Windows 10

8 hours ago

What Microsoft users in business care deeply about—-a system architecture that supports efforts to get their work done efficiently; a work-centric menu to quickly access projects rather than weather readings ...

US official: Auto safety agency under review

21 hours ago

Transportation officials are reviewing the "safety culture" of the U.S. agency that oversees auto recalls, a senior Obama administration official said Friday. The National Highway Traffic Safety Administration has been criticized ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0