Yale scientists to study DNA repair in cancer cells

Oct 25, 2007

Yale School of Medicine researchers have received $8.4 million to study how cancer cells mend their own chromosomes and DNA after damage caused by radiation and chemotherapy.

The study funded by the National Institutes of Health (NIH) is the next step in developing targeted cancer therapies, said the lead researcher, Peter Glazer, M.D., chair of therapeutic radiology and leader of the radiobiology research program at Yale Cancer Center.

“We have put together a program to target protein and DNA repair enzymes that fix the DNA,” Glazer said. “We feel this could create an ‘Achilles heel’ for cancer cells that would make them more vulnerable to traditional cancer therapies.”

Cancer therapies such as radiation and chemotherapy work by damaging the cancer cells’ DNA, which carries the information, or blueprint, for cell replication.

Glazer said the four NIH funded Yale studies combine basic and translational research and may lead to new therapies for use with conventional radiation and chemotherapy.

“It is our hope to be able to offer novel therapies derived from this research to our patients at the Yale Cancer Center,” he said. “The overall program represents a significant commitment of the Yale School of Medicine and the participating investigators to studies that have direct relevance to cancer biology and therapy.”

In one research project, Alan Sartorelli, professor of pharmacology, will develop new cancer prodrugs that become activated in the low-oxygen conditions in which tumor cells can thrive. Once activated, the drug sets in motion the destruction of a resistance protein that repairs certain DNA lesions.

Glazer will lead a study of the cancer DNA repair genes, RAD51 and BRCA1, in cancer cells. His goal is to devise strategies to render cancer cells vulnerable to therapies that target interconnected repair pathways. RAD51 creates a protein that performs DNA repair and BRCA1 is a tumor suppressor associated with breast cancer.

Joann Sweasy, professor of therapeutic radiology, will study how DNA repair occurs in the normal human population and in tumors. She will examine how deficiencies in DNA repair can be used to guide the design of new cancer therapies.

Patrick Sung, professor of therapeutic radiology and of molecular biophysics and biochemistry, will focus on the repair genes BRCA2, FANCD2, and RAD51, and how their repair pathways are regulated at the level of protein-protein interactions.

Source: Yale University

Explore further: Invisible blood in urine may indicate bladder cancer

add to favorites email to friend print save as pdf

Related Stories

New functions for chromatin remodelers

Aug 28, 2014

Large molecular motors consisting of up to a dozen different proteins regulate access to the genome, which is essential for the transcription of genes and for the repair of DNA damage. Susan Gasser and her ...

Light of life

Aug 27, 2014

A fluorescent microscopic view of cells from a type of bone cancer, being studied for a future trip to deep space – aiming to sharpen our understanding of the hazardous radiation prevailing out there.

Recommended for you

Discovery could lead to new cancer treatment

Aug 29, 2014

A team of scientists from the University of Colorado School of Medicine has reported the breakthrough discovery of a process to expand production of stem cells used to treat cancer patients. These findings could have implications ...

Is the HPV vaccine necessary?

Aug 29, 2014

As the school year starts in full swing many parents wonder if their child should receive the HPV vaccine, which is recommended for girls ages 11-26 and boys 11-21. There are a lot of questions and controversy around this ...

User comments : 0