Stanford/Packard researchers find disease genes hidden in discarded data

Oct 24, 2007

Previously hidden obesity-related genes have been uncovered from old experiments by researchers at the Stanford University School of Medicine and Lucile Packard Children's Hospital. The finding suggests that useful information about many medical disorders may be languishing in mountains of discarded data.

"We've devised a fairly simple way to convert large amounts of existing raw data into candidate disease genes for further genetic study," said Atul Butte, MD, PhD, a pediatrician at Packard Children's and director of the hospital's Center for Pediatric Bioinformatics. "When we put the information together, we were not only able to pinpoint those that have already been identified, but we also came up with some very interesting new predictions."

The investigators teased out the existence of more than a dozen new obesity-related genes by comparing the results of 49 independent experiments conducted by other researchers - none of which had yielded similar results on their own.

Butte, who is also an assistant professor of medicine and of pediatrics at the medical school, plans to investigate the biological roles of the new genes soon. The research appears in the Oct. 5 advance access section of the journal Bioinformatics.

Identifying novel genetic culprits for complicated diseases like obesity, diabetes and autism is tricky. Unlike cystic fibrosis, which is caused by a mutation in just one gene, these conditions are often the result of a "perfect storm" of interacting genes and environmental factors. This complexity leaves researchers with limited time to pursue only their most promising results, leaving other candidates behind.

Managing the unused data can be extremely challenging. Microarray or gene-chip experiments, for example, generate tens of thousands of pieces of information. Because most scientific journals require the authors to submit all of their data to publicly available international databases, Butte estimates that the volume of such data is doubling or tripling each year.

Butte and his colleague, postdoctoral student Sangeeta English, PhD, re-analyzed publicly available data from 49 experiments conducted using different methods in a variety of animals from humans to rats to worms. They cast a wide net: The only thing the studies had in common was that they were each designed to ferret out genes or proteins important to fat storage or body size.

"We don't make any assumptions," said Butte. "We trusted the individual investigators to come up with well-thought-out models for their experiments. What we may lose in precision - by, for example, overlooking species-specific differences - we gain in the ability to generalize. Those genes that we do identify as important are likely to be of fundamental importance."

For example, one experiment focused on an extremely rare pediatric disorder called progeria. Children with the condition appear to age rapidly and usually die in their early teens. They also happen to lose their fat cells. "Now, we don't know if this has something to do with obesity," said Butte. "But if it's at all related to fat metabolism, it may contribute something to our knowledge."

Butte and English mixed and matched pairs and small groups of experiments to identify reliable performers. Their premise was that a gene that is only weakly positive in one experiment may easily be dismissed out of hand. However, if that same gene is weakly positive in two or more experiments, the case against it becomes much stronger - particularly if those experiments used very different methods to generate their results.

The researchers' technique may also be able to pick out even previously non-positive genes for further study by allowing the background "noise," or meaningless variations found in every experiment, to cancel one another out, leaving the true positives standing tall. The effect is much like wearing a pair of noise-cancelling headphones on an airplane in order to hear your favorite symphony.

The researchers knew they were on the right track when they pinpointed about 66 percent of nearly 300 previously identified obesity-related genes. In contrast, none of the individual experiments identified more than 30 percent of the same panel, and the average experiment identified only 2 percent.

Further analysis identified 16 genes that were positive in six or more experiments, and three that were positive in eight experiments. Of those three, one was a known obesity gene. The other two have no known ties to obesity, yet. "Now we can take these two candidates straight to the geneticists and the lab to begin figuring out what they do," said Butte.

The comparison approach should be applicable to many other disorders. "The data are out there," said Butte, who has pioneered ways to categorize and index the vast quantities of biomedical information in preparation for further study. "We need to translate it and make it useful for other researchers and disorders."

Source: Stanford University Medical Center

Explore further: Down's chromosome cause genome-wide disruption

add to favorites email to friend print save as pdf

Related Stories

Using robots to study evolution

Apr 14, 2014

A new paper by OIST's Neural Computation Unit has demonstrated the usefulness of robots in studying evolution. Published in PLOS ONE, Stefan Elfwing, a researcher in Professor Kenji Doya's Unit, has succes ...

On the trail of fire ant pheromones

Apr 14, 2014

The painful sting of the red imported fire ant is not easily forgotten. Delivered in large numbers, the stings can kill small animals. Humans that develop hypersensitivity to the ants' venom are at risk as ...

Recommended for you

Down's chromosome cause genome-wide disruption

9 hours ago

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Research uncovers DNA looping damage tied to HPV cancer

15 hours ago

It's long been known that certain strains of human papillomavirus (HPV) cause cancer. Now, researchers at The Ohio State University have determined a new way that HPV might spark cancer development – by ...

New therapy against rare gene defects

Apr 15, 2014

On 15th April is the 1st International Pompe Disease Day, a campaign to raise awareness of this rare but severe gene defect. Pompe Disease is only one of more than 40 metabolic disorders that mainly affect children under ...

User comments : 0

More news stories

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

More vets turn to prosthetics to help legless pets

A 9-month-old boxer pup named Duncan barreled down a beach in Oregon, running full tilt on soft sand into YouTube history and showing more than 4 million viewers that he can revel in a good romp despite lacking ...