Researchers unlock how cells determine their functions

Feb 27, 2006

Researchers at the University of California, Riverside have discovered a molecular mechanism directing the fate and function of cells during animal development. The findings could hold promise for the advancement of cancer and stem-cell research.

The research is published in the Feb. 24 edition of the journal Science. UCR Biochemistry Professor Frank Sauer, with German colleague Elisabeth Kremmer of the Institut für Molekulare Immunologie in Munich, and fellow UCR researchers Tilman Sanchez-Elsner and Dawei Gou authored the paper titled, Noncoding RNAs of Trithorax Response Elements Recruit Drosophila Ash1 to Ultrabithorax.

The paper explains how proteins, known as epigenetic activators (such as Ash1 from the fruit fly Drosophila), bind to their target DNA and activate genes that determine what function a cell will have in the body.

"The fact that these epigenetic activators, such as Ash1, turn on the expression of specific target genes has been known for some time. However, the mechanisms by which epigenetic activators recognize and bind these target genes was not yet known" Sauer pointed out

"What we were able to show is that the epigenetic activator Ash1is recruited to a target gene through cell-type specific non-coding RNA" he said.

The paper examined how the activator Ash1 binds to target DNA elements, known as Trithorax-reponse elements (TREs), located in the gene Ultrabithorax (Ubx). Non-coding RNA is produced by and retained at the TREs of Ubx, and helps activate the expression of the Ubx gene by attracting Ash1 to the TREs. The transgenic transcription of non-coding TRE RNA can change the type and function of cells.

"As a result, we can now use non-coding RNAs as tools to actively determine cell fate," Sauer said. "Over the last few years, researchers have focused on how noncoding RNAs silence genes," said Anthony Carter, of the National Institute of General Medical Sciences, which partially funded the research. "Dr. Sauer's work has revealed that noncoding RNAs have a broader range of functions than was previously known, and suggests a model for how they can help activate, rather than silence, a key regulator of animal development."

Source: University of California - Riverside

Explore further: Earliest humans had diverse range of body types, just as we do today

add to favorites email to friend print save as pdf

Related Stories

Amazon says FAA drone approval already obsolete

1 hour ago

The approval federal aviation officials gave Amazon.com last week to test a specific drone design outdoors is already outdated, the company's top policy executive said Tuesday in written testimony to a Senate subcommittee.

Firm combines 3-D printing with ancient foundry method

1 hour ago

A century-old firm that's done custom metal work for some of the nation's most prestigious buildings has combined 3-D printing and an ancient foundry process for a project at the National Archives Building in Washington, ...

Recommended for you

Destroyed Mosul artefacts to be rebuilt in 3D

7 hours ago

It didn't take long for the scientific community to react. Two weeks after the sacking of the 300 year-old Mosul Museum by a group of ISIS extremists went viral on Youtube, researchers from the ITN-DCH, IAPP ...

Boys plagiarise more than girls at school

8 hours ago

Research by the University of the Balearic Islands has analysed the phenomenon of academic plagiarism among secondary school students. The study, published in the journal Comunicar, confirms that this practi ...

Economist probes the high cost of health care

8 hours ago

When Zack Cooper arrived at Yale as assistant professor of public health and economics, he gained access to a first-of-its-kind dataset. Working with the non-profit Health Care Cost Institute, Cooper and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.