Researchers unlock how cells determine their functions

Feb 27, 2006

Researchers at the University of California, Riverside have discovered a molecular mechanism directing the fate and function of cells during animal development. The findings could hold promise for the advancement of cancer and stem-cell research.

The research is published in the Feb. 24 edition of the journal Science. UCR Biochemistry Professor Frank Sauer, with German colleague Elisabeth Kremmer of the Institut für Molekulare Immunologie in Munich, and fellow UCR researchers Tilman Sanchez-Elsner and Dawei Gou authored the paper titled, Noncoding RNAs of Trithorax Response Elements Recruit Drosophila Ash1 to Ultrabithorax.

The paper explains how proteins, known as epigenetic activators (such as Ash1 from the fruit fly Drosophila), bind to their target DNA and activate genes that determine what function a cell will have in the body.

"The fact that these epigenetic activators, such as Ash1, turn on the expression of specific target genes has been known for some time. However, the mechanisms by which epigenetic activators recognize and bind these target genes was not yet known" Sauer pointed out

"What we were able to show is that the epigenetic activator Ash1is recruited to a target gene through cell-type specific non-coding RNA" he said.

The paper examined how the activator Ash1 binds to target DNA elements, known as Trithorax-reponse elements (TREs), located in the gene Ultrabithorax (Ubx). Non-coding RNA is produced by and retained at the TREs of Ubx, and helps activate the expression of the Ubx gene by attracting Ash1 to the TREs. The transgenic transcription of non-coding TRE RNA can change the type and function of cells.

"As a result, we can now use non-coding RNAs as tools to actively determine cell fate," Sauer said. "Over the last few years, researchers have focused on how noncoding RNAs silence genes," said Anthony Carter, of the National Institute of General Medical Sciences, which partially funded the research. "Dr. Sauer's work has revealed that noncoding RNAs have a broader range of functions than was previously known, and suggests a model for how they can help activate, rather than silence, a key regulator of animal development."

Source: University of California - Riverside

Explore further: Greenland darkening to continue, predicts CCNY expert Marco Tedesco

Related Stories

Pro-Saudi hackers seize Iran TV's social media accounts

6 hours ago

Hackers took over the social media accounts of Iran's Al-Alam television Sunday and posted material supportive of the Saudi-led air war against Iran-backed rebels in Yemen, the Arabic-language channel said.

Subzero learning environment enabling avalanche research

6 hours ago

A recent article about avalanche research in Popular Science referred to the effort toward knowing more about the avalanche in its subhead as "snowslide science," and the article was about the interesting lab wo ...

Recommended for you

Devices or divisive: Mobile technology in the classroom

16 hours ago

Little is known about how new mobile technologies affect students' development of non-cognitive skills such as empathy, self-control, problem solving, and teamwork. Two Boston College researchers say it's ...

Forming school networks to educate 'the new mainstream'

21 hours ago

As immigration increases the number of non-English speaking "culturally and linguistically diverse" students, schools will need to band together in networks focused on the challenges of educating what has been called "the ...

Rare tidal movements expose Kimberley dinosaur tracks

22 hours ago

While audiences in Perth attend Walking with Dinosaurs this weekend palaeontologists working near Broome will be documenting the extinct vertebrates' extensive fossilised footsteps using laser scanning technology.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.