Scientists spot sneaky 'neurodegenerative' iron at the European synchrotron

Oct 10, 2007
Scientists spot sneaky 'neurodegenerative' iron at the European synchrotron
Iron is localized within dopamine neurovesicles. Visible light microscopy of freeze-dried cells (A), and epifluorescence microscopy of the same freeze-dried cells (B) enable the identification of dopamine distribution, while synchrotron X-ray fluorescence nano-imaging reveals the distribution of iron (C, D). Panels C and D represent comparison of the same region imaged in a fluorescent mode to visualize dopamine and with X-ray fluorescence to localize iron. Dopamine and iron are co-located within 200 nm structures characteristic of dopamine neurovesicles as identified by epifluorescence microscopy. A large number of iron and dopamine neurovesicles are found in neurite outgrowths (C) and distal ends (D). Min-max range bar units are arbitrary. Scale bars = 1 µm.

Scientists suspect that iron accumulation plays a role in neurodegenerative processes such as Parkinson’s disease, but its distribution in neurons has never been observed because of the lack of techniques to do so. Until today.

Researchers from CNRS at the University of Bordeaux (France), University of Sevilla (Spain), INSERM Grenoble Institute of Neurosciences (France) and ESRF have studied the iron distribution in an in vitro model of neuronal cells that produce dopamine.

Dopamine is a neurotransmitter, a chemical messenger between nerve cells in the mammalian brain. Because dopamine can form stable complexes with iron, Richard Ortega from the cellular chemical imaging group in Bordeaux, believed that dopamine may exert a protective effect by buffering iron in dopaminergic neurons and that this system might be at fault in Parkinson’s disease.

With the aim of testing this hypothesis, the team used the new nanoprobe imaging experimental station recently developed at the European Synchrotron Radiation Facility to study the distribution of elements in cells. The resolution of 90 nanometres allowed scientists to visualize the elements distribution in the neurotransmitter vesicles. The nanoprobe excites the sample with a strongly focused X-ray beam and collects the characteristic fluorescence signal that is re-emitted. This allows showing the different trace elements in a point, and then the sample is scanned point by point to form a complete multi-element image of the cells.

The team shows that iron is stored within dopamine vesicles inside the neuronal cells. This is the first evidence of iron-dopamine co-localization in neuro-vesicles. The results also explain that when dopamine production is obstructed, the iron in the vesicles drastically decreases. This new function of dopamine vesicles in iron storage is of critical importance to understand the molecular mechanisms involved in Parkinson’s disease. In this neurological disorder, dopamine vesicular storage has been found impaired. According to these results, this would increase the levels of highly toxic iron-dopamine complexes in the neurons. The results are published in PLoS ONE on September 26.

The synchrotron nano-imaging station offers a new tool for researchers involved not only in the study of neurodegenerative diseases but also in many other fields where the determination of metal ions distribution at the subcellular level is important such as: metal toxicology, chemical carcinogenesis, and cellular pharmacology of inorganic compounds. This is one of the reasons why the team decided to submit their results in an open access journal such as PLoS ONE: “ We want the different scientific communities to know that this machine is available, and the best way is by letting everyone have access to the results”, explains Peter Cloetens, in charge of the station at ESRF.

Reference: Ortega R., Cloetens P., Devès G., Carmona A., Bohic S. (2007) Iron storage in neurovesicles revealed by chemical nano-imaging. PLoS ONE (September 26, 2007)(www.plosone.org/doi/pone.0000925).

Source: ESRF

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Venture investments jump to $9.5B in 1Q

2 hours ago

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.

White House updating online privacy policy

2 hours ago

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...

Scientists tether lionfish to Cayman reefs

2 hours ago

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.