Microgrid Allows Simultaneous Study of Multiple Variables

Oct 10, 2007
Microgrid Allows Simultaneous Study of Multiple Variables
(A) Infrared reflectivity of gold as a function of thickness. The substrate was produced with a bar thickness of 12 nm (~85% IR reflectivity), and the remaining part of the grid was 25 nm (100% reflectivity). (B) XRF intensity of gold as a function of thickness. The Au XRF intensity from the bar was approximately half the intensity from the remaining part of the grid. (C) visible light micrograph (top), FTIRM reflectivity image (middle), and Au XRF intensity image (bottom) from the sample substrate. Credit: BNL

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have developed a method for correlating the results of microscopic imaging techniques in a way that could lead to improved understanding, diagnosis, and possibly treatment of a variety of disease conditions, including Alzheimer's disease. The Laboratory has filed a U.S. provisional patent application for the invention.

The invention is essentially a micron-scale metallic marking grid upon which scientists place their samples - biological tissues or inorganic samples such as minerals - prior to imaging with different methods. "When the findings are analyzed, the grid can be used to 'map,' or orient, the images to one another, allowing us to study multiple variables in a single sample and better understand how they relate to one another," said biophysicist Lisa Miller, leader of the team that developed the new method.

For example, many diseases such as Alzheimer's are characterized by changes in both organic materials, such as proteins, as well as changes in the composition or concentration of inorganic trace metals (e.g., iron, copper, and zinc). Scientists have techniques - infrared spectroscopy and x-ray fluorescence - for studying each of these independently. But without a way to correlate the findings from the two methods, important information about the relationship between the organic and inorganic components can be missed.

"The x-ray and infrared-sensitive grid allows for the study of both pathological symptoms by precisely overlapping the results of these imaging methods," Miller said. "This ability to correlate images will ultimately lead to a more complete picture of many disease states." The grid is deposited in two thicknesses onto an x-ray transparent material like mylar. It can be made of any metal, but gold is preferred. The "bars" of the grid are only a couple of nanometers thick, whereas the remainder of the metal surface is thicker. The dual thicknesses make the pattern sensitive to both infrared reflectivity and x-ray fluorescence imaging.

In another version of the invention, a single-layered grid is used to correlate light microscopy with x-ray fluorescence imaging.

Once the images are collected, custom software uses the grid patterns to align the images and correlate them with each other.

In addition to helping scientists study disease processes, the method could also be applied in monitoring and/or cleaning up environmental contamination, which is also characterized by the interplay of organic and inorganic factors.

Source: Brookhaven National Laboratory

Explore further: A new generation of storage—ring

add to favorites email to friend print save as pdf

Related Stories

China completes first mission to moon and back

7 hours ago

China completed its first return mission to the moon early Saturday with the successful re-entry and landing of an unmanned probe, state media reported, in the latest step forward for Beijing's ambitious ...

Breaking down DNA by genome

7 hours ago

New DNA sequencing technologies have greatly advanced genomic and metagenomic studies in plant biology. Scientists can readily obtain extensive genetic information for any plant species of interest, at a relatively low cost, ...

Recommended for you

A new generation of storage—ring

15 hours ago

A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical ...

Universe may face a darker future

18 hours ago

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

High-intensity sound waves may aid regenerative medicine

Oct 30, 2014

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

Oct 30, 2014

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.