The difference between fish and humans: Scientists answer century-old developmental question

Oct 10, 2007

Embryologists at UCL (University College London) have helped solve an evolutionary riddle that has been puzzling scientists for over a century. They have identified a key mechanism in the initial stages of an embryo’s development that helps differentiate more highly evolved species, including humans, from less evolved species, such as fish. The findings of the research were published online today by the journal Nature.

Early on in development, the mass of undifferentiated cells that make up the embryo must take the first steps in deciding how to arrange themselves into component parts to eventually go on to form a fully developed body. This is a process known as ‘gastrulation’.

During this stage, the cells group into three layers, the first is the ‘ectoderm’ which then in turn generates the ‘mesoderm’ and ‘endoderm’ layers. In higher vertebrates, such as mammals and birds, the mesoderm and endoderm are generated from an axis running through the centre of the embryo. However, in lower vertebrates, such as amphibians and fish, the two layers are generated around the edge of the embryo.

Using chicken eggs and a state-of-the-art imaging device which can reveal how cells move in three dimensions, the researchers demonstrated a key difference in the way gastrulation occurs between higher vertebrate species and less evolutionarily advanced animals. They discovered that the reason why higher vertebrates form their axis at the midline of the embryo is because during evolution they acquired a new mechanism of “cell intercalation” which positions the axis at the midline. They also discovered the molecules used by the embryo to control these cell movements.

Scientists have been speculating for over a century on the difference between the embryonic development of higher vertebrates and lower vertebrates, to help answer how the simple cell structure of an embryo goes on to form the various highly complex bodies of different species. Research leader Prof Claudio Stern explains: “This is a significant find as it is a clear difference between the embryonic development of more advanced species and less advanced species. It suggests that higher vertebrates must have developed this mechanism later on in the history of animal evolution.

In humans this process occurs during week 3 of embryonic development, and forms the cut-off point for scientific research on human embryos in the UK.

Source: Biotechnology and Biological Sciences Research Council

Explore further: Diabetes drug found in freshwater is a potential cause of intersex fish

Related Stories

Nepal quake: Nearly 1,400 dead, Everest shaken (Update)

5 hours ago

Tens of thousands of people were spending the night in the open under a chilly and thunderous sky after a powerful earthquake devastated Nepal on Saturday, killing nearly 1,400, collapsing modern houses and ...

Russian hackers read Obama emails, report says

6 hours ago

Emails to and from President Barack Obama were read by Russian hackers last year in a breach of the White House's unclassified computer system, The New York Times said Saturday.

Supermarkets welcome cold-comfort edge of F1 aerofoils

10 hours ago

UK-based Williams Advanced Engineering, the technology and engineering services business of the Williams Group, has collaborated with UK-based Aerofoil Energy to develop an aerodynamic device that can reduce ...

Public boarding school—the way to solve educational ills?

14 hours ago

Buffalo's chronically struggling school system is considering an idea gaining momentum in other cities: public boarding schools that put round-the-clock attention on students and away from such daunting problems as poverty, ...

Recommended for you

York's anti-malarial plant given Chinese approval

Apr 24, 2015

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

Apr 24, 2015

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.