A Positive Spin

Feb 22, 2006
A Positive Spin

Beams with polarized particles greatly boost the physics output of high energy physics colliders. While it has been straightforward to make polarized electron beams, polarizing positrons is more difficult, especially in the case of linear colliders. The E-166 experiment has successfully demonstrated a technology to make a polarized beam of positrons for a future linear collider.

For decades, Stanford Linear Accelerator Center (SLAC) has been making positrons—the antimatter equivalent of electrons—but this is the first polarized positron beam at SLAC. Polarized means the particles are oriented to spin in the same direction; imagine most of the golf balls at a driving range rotating clockwise as they fly toward the net. Beams never reach 100 percent polarization, but the more polarized the beams, the more information they reveal in collisions.

E-166 proves that the proposed International Linear Collider (ILC) could be designed with a polarized positron beam. The collaboration is still analyzing the results to determine the precise amount of polarization achieved. “Let’s say the beam is definitely polarized, sufficient for a linear collider,” said Bill Bugg (University of Tennessee, Knoxville).

In two runs during June and September 2005, the collaboration used SLAC’s two-mile linac to deliver electrons to the Final Focus Test Beam (FFTB). There the electrons travel through a helical undulator, a one-meter-long magnet that forces the electrons to spiral, thus emitting polarized gamma rays. The gamma rays strike a tungsten target, producing showers of polarized positrons with an average energy of 5 to 6 million electron volts (MeV). Alexander Mikhailichenko (Cornell), who built the undulator for the experiment, was one of the people to originally propose the technique in 1979.

The electrons travel through the undulator in a tiny beam pipe—a stainless steel tube with a 0.9-millimeter inside diameter. The pipe is cut from the same hollow metal used for hypodermic needles and cheap, too, at $1 per foot. Even though the electron beam is 20 times narrower than the pipe aperture, some feared the small pipe would be a showstopper. The beam needed to go cleanly through the undulator without touching the pipe wall. Any beam loss at all would have saturated the detectors with background noise.

“The undulator performance was superb, like flipping a switch,” said experiment spokesman John Sheppard (ILC).

The results put to rest doubts that helical undulators would produce circularly polarized gamma rays or that polarized gamma rays would in turn produce polarized positrons.

“SLAC was the only place we could possibly do this experiment,” Sheppard said. “We needed a 50 GeV low-emittance (transversely small) beam, small enough to fit through the undulator beam pipe. The success of the experiment in large part was due to the excellent beam quality and stability delivered by the SLAC operations staff.”

Collaborators who took shifts at SLAC came from the University of Tennessee, DESY Hamburg, DESY Zeuthen, Humboldt University Berlin, Cornell, Daresbury, RWTH Aachen, Princeton and Tel-Aviv University.

Source: Stanford Linear Accelerator Center (Heather Rock Woods)

Explore further: Creating optical cables out of thin air

add to favorites email to friend print save as pdf

Related Stories

As numbers of gray seals rise, so do conflicts

9 hours ago

(AP)—Decades after gray seals were all but wiped out in New England waters, the population has rebounded so much that some frustrated residents are calling for a controlled hunt.

Recommended for you

'Comb on a chip' powers new atomic clock design

9 hours ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Quantum leap in lasers brightens future for quantum computing

9 hours ago

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Technique simplifies the creation of high-tech crystals

9 hours ago

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing ...

A new multi-bit 'spin' for MRAM storage

12 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

User comments : 0