A Positive Spin

Feb 22, 2006
A Positive Spin

Beams with polarized particles greatly boost the physics output of high energy physics colliders. While it has been straightforward to make polarized electron beams, polarizing positrons is more difficult, especially in the case of linear colliders. The E-166 experiment has successfully demonstrated a technology to make a polarized beam of positrons for a future linear collider.

For decades, Stanford Linear Accelerator Center (SLAC) has been making positrons—the antimatter equivalent of electrons—but this is the first polarized positron beam at SLAC. Polarized means the particles are oriented to spin in the same direction; imagine most of the golf balls at a driving range rotating clockwise as they fly toward the net. Beams never reach 100 percent polarization, but the more polarized the beams, the more information they reveal in collisions.

E-166 proves that the proposed International Linear Collider (ILC) could be designed with a polarized positron beam. The collaboration is still analyzing the results to determine the precise amount of polarization achieved. “Let’s say the beam is definitely polarized, sufficient for a linear collider,” said Bill Bugg (University of Tennessee, Knoxville).

In two runs during June and September 2005, the collaboration used SLAC’s two-mile linac to deliver electrons to the Final Focus Test Beam (FFTB). There the electrons travel through a helical undulator, a one-meter-long magnet that forces the electrons to spiral, thus emitting polarized gamma rays. The gamma rays strike a tungsten target, producing showers of polarized positrons with an average energy of 5 to 6 million electron volts (MeV). Alexander Mikhailichenko (Cornell), who built the undulator for the experiment, was one of the people to originally propose the technique in 1979.

The electrons travel through the undulator in a tiny beam pipe—a stainless steel tube with a 0.9-millimeter inside diameter. The pipe is cut from the same hollow metal used for hypodermic needles and cheap, too, at $1 per foot. Even though the electron beam is 20 times narrower than the pipe aperture, some feared the small pipe would be a showstopper. The beam needed to go cleanly through the undulator without touching the pipe wall. Any beam loss at all would have saturated the detectors with background noise.

“The undulator performance was superb, like flipping a switch,” said experiment spokesman John Sheppard (ILC).

The results put to rest doubts that helical undulators would produce circularly polarized gamma rays or that polarized gamma rays would in turn produce polarized positrons.

“SLAC was the only place we could possibly do this experiment,” Sheppard said. “We needed a 50 GeV low-emittance (transversely small) beam, small enough to fit through the undulator beam pipe. The success of the experiment in large part was due to the excellent beam quality and stability delivered by the SLAC operations staff.”

Collaborators who took shifts at SLAC came from the University of Tennessee, DESY Hamburg, DESY Zeuthen, Humboldt University Berlin, Cornell, Daresbury, RWTH Aachen, Princeton and Tel-Aviv University.

Source: Stanford Linear Accelerator Center (Heather Rock Woods)

Explore further: New portable vacuum standard

add to favorites email to friend print save as pdf

Related Stories

New light shed on electron spin flips

Jan 07, 2015

Researchers from Berlin Joint EPR Lab at Helmholtz-Zentrum Berlin (HZB) and University of Washington (UW) derived a new set of equations that allows for calculating electron paramagnetic resonance (EPR) transition ...

Twisting the light away using ultrasmall holes

Jun 20, 2014

A new study shows that light transmitted through apertures smaller than the wavelength of light go through a radical change, splitting into two symmetrical counter-rotating polarisations.

A closer look into the TSLP cytokine structure

Apr 04, 2014

The PROXIMA 2 beamline at Synchrotron SOLEIL recently celebrated its first birthday. It's an occasion to reflect back upon a year of the collaborative work accomplished and its high scientific impact. In ...

Breakthrough unravels photoelectric effect

Dec 19, 2013

An international team including theorists from the Department of Electromagnetic Processes and Atomic Nuclei Interactions of the MSU Institute of Nuclear Physics managed, for the first time in the history of photoelectric ...

Recommended for you

New portable vacuum standard

1 hour ago

A novel Portable Vacuum Standard (PVS) has been added to the roster of NIST's Standard Reference Instruments (SRI). It is now available for purchase as part of NIST's ongoing commitment to disseminate measurement ...

Hybrid memory device for superconducting computing

2 hours ago

A team of NIST scientists has devised and demonstrated a novel nanoscale memory technology for superconducting computing that could hasten the advent of an urgently awaited, low-energy alternative to power-hungry conventional ...

Prototype for first traceable PET-MR phantom

2 hours ago

As cancer diagnostic tools, a new class of imagers – which combines positron-emission tomography (PET) with magnetic resonance imaging (MR or MRI) – has shown promise in the few years since these hybrid ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.