Animal study identifies potential treatment for Huntington's disease

Oct 08, 2007

MassGeneral Institute for Neurodegererative Disorders (MIND) researchers have identified a compound that may lead to a treatment that could protect against the effects of Huntington’s Disease (HD). Their report, which will appear in the Proceedings of the National Academy of Sciences, describes how a small molecule called C2-8 appears to delay the loss of motor control and reduce neurological damage in a mouse model of the disorder. The study is receiving early online release.

“We found that C2-8 slows the progress of HD in a mouse model and might do the same thing in human patients, if it or its biochemical relatives can be translated into a drug,” says Steven Hersch, MD, PhD, of MIND and the Massachusetts General Hospital (MGH) Department of Neurology, who led the study. “What we don’t know yet is precisely how it works, what molecules it interacts with in cells and how potent it might be.”

C2-8 was first identified as a candidate treatment for HD by MIND researcher Aleksey Kazantsev, PhD, based on its ability to block the aggregation of the mutant huntingtin protein in yeast and animal tissue and to improve function in a fruit fly model. The current study was designed to further investigate its potential as a therapeutic drug. The researchers first confirmed that oral doses of C2-8 can cross the blood-brain barrier and are nontoxic in a mouse model of HD. They also found that C2-8 does not interact with a number of molecules predictive of negative side effects.

HD mice that were treated with C2-8 starting at the age of 24 days scored significantly better on tests of strength, endurance and coordination than did HD mice that did not receive the molecule. While treatment significantly delayed progressive motor disability, the animals receiving C2-8 did not live longer. Examination of brain cells from the striatum, the area of the brain where the deterioration of HD occurs, showed that treated mice had less shrinkage of brain cells and smaller aggregates of huntingtin protein than did untreated HD mice.

“We’ve both validated that compounds reducing the aggregation of mutant huntingtin are potential HD drugs – so that strategy is one that other scientists should pursue – and shown that C2-8 has potential as the basis of a neuroprotective treatment,” says Hersch. “We now need to confirm those results in a different mouse model, see whether similar compounds may be more potent than C2-8 and search for the enzyme or receptor it is binding to.” Hersch is an associate professor of Neurology at Harvard Medical School.

Source: Massachusetts General Hospital

Explore further: HIV patients experience better kidney transplant outcomes than Hepatitis C patients

Related Stories

Flocks of starlings ride the wave to escape

11 minutes ago

Why does it seem as if a dark band ripples through a flock of European starlings that are steering clear of a falcon or a hawk? It all lies in the birds' ability to quickly and repeatedly dip to one side to avoid being attacked. ...

Blue Freedom uses power of flowing water to charge

31 minutes ago

Good friends may decide to tell you something that is not true but nonetheless sustaining: Nothing is impossible. That was the case of Blue Freedom co-founder who asked his friend if it would be possible ...

Recommended for you

AAPM: Platelet-rich plasma offers short-term benefit

2 hours ago

(HealthDay)—For patients with facet joint arthropathy, platelet-rich plasma (PRP) has a short-term positive impact, according to a study presented at the annual meeting of the American Academy of Pain Medicine, ...

Brittle bone disease: Drug research offers hope

5 hours ago

New research at the University of Michigan offers evidence that a drug being developed to treat osteoporosis may also be useful for treating osteogenesis imperfecta or brittle bone disease, a rare but potentially debilitating ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.