Study links chemical to inhibited milk synthesis, secretion in humans

Oct 08, 2007

University of Cincinnati (UC) researchers have identified the neurotransmitter serotonin as the chemical responsible for inhibiting milk production and secretion in human mammary glands.

As growing demand outstrips milk supplies in some parts of the world, the finding could aid development of therapeutics or technologies that would increase milk production and yields from other mammals.

Results of the human study, led by Nelson Horseman, PhD, UC professor of molecular and cellular physiology, appear in the Oct. 8–12, 2007, early edition of Proceedings of the National Academy of Sciences.

“Knowing the chemical responsible for inhibiting milk production could help us to improve milk yields in other mammals,” Horseman says.

In lactating mammals, milk synthesis and secretion gradually slows to a stop when mammary glands become full. Once mammary glands are emptied, milk production begins again.

For decades, scientists have been trying to pinpoint the cause of inhibited milk production. In the 1970s, researchers in Scotland and New Zealand determined that a chemical had to regulate milk synthesis and secretion. A UC-led rodent study in 2004 identified the chemical as serotonin.

Serotonin is a naturally occurring neurotransmitter made in the brain and intestinal tract. When produced in the intestinal tract, the chemical is stored in blood platelets and released at wound sites to promote clotting and healing. Low levels of serotonin in the brain have been linked to depression and other mood disorders.

Horseman and his team now report that serotonin is also produced in human mammary glands—building up as the mammary gland fills with milk, inhibiting further milk synthesis and secretion.

“If we can understand how to stop or reduce serotonin production in the mammary gland, we can reverse its actions,” Horseman says.

The investigator was recently issued a patent for specific drugs known to inhibit serotonin production. Inhibiting this chemical in the mammary gland, he says, has been shown to increase milk yields by up to 15 percent.

Improved milk yields, says Horseman, could help ease milk shortages in some parts of the world caused by drought and increased demand.

“Demand for milk has increased in Asia and prices for milk have gone up across the world,” says Horseman.

A United States Department of Agriculture (USDA) 2001–2005 summary of 30 American cities showed that, over a five-year period, the average price of whole milk rose by 11 percent.

“Farmers currently use a growth hormone to improve milk yields,” says Horseman. “Use of that hormone has declined in recent years at the request of consumers, but milk shortages are getting worse. Finding ways to increase yield in a way that’s acceptable to consumers is important.”

In March 2007, the USDA awarded Horseman and colleagues a $350,000 grant to further study milk synthesis and secretion in cows.

The UC team is partnering with researchers in the University of Arizona’s animal science program to study cows and cow mammary tissue.

Although the rodent and human cells they have studied have many similarities, cow cells appear to have some unique differences. For example, Horseman’s team has identified one receptor for serotonin in the mammary gland of humans and rodents, and at least three in cows.

“We hope that by gaining a better understanding of how serotonin works in cows, we can find ways to inhibit its synthesis without the use of drugs or growth hormones,” says Horseman. “Our ultimate goal would be to increase milk yield in a way that’s effective without side effects.”

Source: University of Cincinnati

Explore further: Study shows troubling rise in use of animals in experiments

add to favorites email to friend print save as pdf

Related Stories

Cow moms favor daughters in milk production study

Jan 27, 2014

Sorry, boys. In the end, mothers favor daughters – at least when it comes to Holstein dairy cows and how much milk they produce for their offspring, according to a new study by Kansas State University and ...

Recommended for you

Living in the genetic comfort zone

5 hours ago

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external ...

Cats put sight over smell in finding food

7 hours ago

Cats may prefer to use their eyes rather than follow their nose when it comes to finding the location of food, according to new research by leading animal behaviourists.

Feds spot third baby orca born recently to imperiled pods

8 hours ago

(AP)—U.S. scientists following endangered killer whales from a research vessel have spotted a baby orca off the coast of Washington state, the third birth documented this winter but still leaving the population ...

Malaria transmission linked to mosquitoes' sexual biology

9 hours ago

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.