Methodist Neurosurgeon Makes Quantum Leap on Nano-Level

Feb 22, 2006

A neurosurgeon at the Methodist Neurological Institute (NI) is the first to use an enzyme-driven technique to label nanotubes with quantum dots, giving scientists a better way to see single-walled carbon nanotubes.

The ability to do this labeling allows nanotubes, nanomachines, or other nanoscale optical devices to be used for biomedical research. One practical application might include the precise delivery of medications to specific cancer cells, effectively sparing surrounding healthy cells.

Dr. David Baskin, neurosurgeon at the Methodist NI, and his colleagues published these research findings in the March 2006 issue of BioTechniques.

Dr. Baskin and Vladimir Didenko, PhD used an enzyme to create a permanent bond to attach semi-conductor nanocrystals, or Q-dots, to nanotubes. Because nanotubes absorb light, making them invisible, researchers have tried to find ways to make them visible inside living organisms. The light absorption properties of the nanotubes are bypassed by using the Q-dots.

“By attaching these Q-dots like beads on a string, we have the potential to link tens, hundreds, thousands of these strings together, creating nanomachines that can act like probes, giving researchers a new view into cancer cells, proteins, and DNA molecules,” said Dr. Baskin.

Once fluorescent, nanotubes can be observed by microscopes, which could enable the construction of nano-size devices. “We’re talking about the possibility of one day developing probes for biomedical research, quantum computing, possibly even a quantum internet,” said Dr. Baskin. “That would be huge in the world of nanoscience.”

In addition to this research, Drs. Baskin and Didenko have also worked with the late Dr. Richard Smalley, the Nobel laureate who developed the “buckyball.” Their research focused on manipulating carbon nanotubes to create fluorescent probes, something no other researcher had ever accomplished. Drs. Baskin, Didenko, and Smalley created a way to tightly wrap a polymer material around a nanotube, like a spool of thread, allowing them to label a nanotube. This resulted in a fluorescent probe and made individual nanotubes observable by a fluorescent microscope. An article on this research, co-authored with Dr. Smalley, can be found in Nano Letters; 2005, Vol. 5, No. 8.

A nanometer is too small to be seen with a conventional lab microscope. It is at this size scale, about 100 nanometers or less, that biological molecules and structures inside living cells operate.

Source: Methodist Neurological Institute

Explore further: Technique for quantification of erythrocyte zinc protoporphyrin IX and protoporphyrin IX

add to favorites email to friend print save as pdf

Related Stories

Physicists discuss quantum pigeonhole principle

2 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Giant crater in Russia's far north sparks mystery

4 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

4 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Giant anteaters kill two hunters in Brazil

4 hours ago

Giant anteaters in Brazil have killed two hunters in separate incidents, raising concerns about the animals' loss of habitat and the growing risk of dangerous encounters with people, researchers said.

Recommended for you

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

Jul 29, 2014

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

User comments : 0