Physicist addresses international forum on thermoelectric energy

Oct 03, 2007

Energy lost from hot engines could save billions of dollars if it could be captured and converted into electricity via thermoelectric devices, Clemson University physicist Terry Tritt told scientists gathered in Dallas for the world-renowned NanoTX ’07 conference.

Tritt delivered an address at the Alan MacDairmid Memorial Nano Energy Summit on challenges in alternative energy, specifically thermoelectricity used to generate electrical energy from waste heat.

“Thermoelectric generators are currently used in NASA’s deep-space probes to convert the heat of radioactive elements to electrical energy, powering these systems for over 30 years,” Tritt said. “Thermoelectric energy conversion is a solid-state technology that is environmentally friendly. One of the more promising ‘down-to-earth’ applications lies in waste-heat recovery in cars.”

Tritt said more than 60 percent of the energy that goes into an automotive combustion cycle is lost, primarily to waste heat through the exhaust or radiator system.

“Even at the current efficiencies of thermoelectric devices, 7 to 8 percent, more than 1.5 billion gallons of diesel could be saved each year in the U.S. if thermoelectric generators were used on the exhaust of heavy trucks. That translates into billions of dollars saved,” Tritt said.

Clemson research focuses on developing higher-efficiency thermoelectric materials that could increase savings significantly. Research on the electrical and thermal properties of new materials could reduce the world’s reliance on fossil fuels and has shown promise with two classes of materials: low-dimensional systems for enhanced electrical properties and increased phonon scattering that leads to inherently low thermal conductivity.

Tritt heads up the Department of Energy’s Center of Excellence in Thermoelectric Materials Research at Clemson, one of the leading laboratories for thermoelectric materials in the world. The national center focuses on the next generation of thermoelectric materials for power conversion and refrigeration. Researchers in physics, materials science and chemistry screen promising new classes of materials in order to achieve higher-performance thermoelectric materials. DOE recently renewed the program with more than $1 million a year in research funding for the next three years.

Source: Clemson University

Explore further: Experiment with speeding ions verifies relativistic time dilation to new level of precision

add to favorites email to friend print save as pdf

Related Stories

Europe's new age of metals begins

Sep 11, 2014

ESA has joined forces with other leading research institutions and more than 180 European companies in a billion-euro effort developing new types of metals and manufacturing techniques for this century.

Chromium's bonding angles let oxygen move quickly

Sep 03, 2014

By taking advantage of the natural tendency of chromium atoms to avoid certain bonding environments, scientists at DOE's Pacific Northwest National Laboratory have generated a material that allows oxygen ...

Recommended for you

How Paramecium protozoa claw their way to the top

19 hours ago

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
not rated yet Oct 03, 2007
Hybrid vehicles already combine internal combustion and electric power, thermoelectric recepture of heat enrgy can be fed back into the batteries or fuel cells increasing efficiency.
Ultra high strength materials will enable lowering fuel use too.