New engineering model advances prospect of alternative-fuel vehicles

Oct 03, 2007

Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have developed a model that could help engineers and scientists speed up the development of hydrogen-fueled vehicles by identifying promising hydrogen-storage materials and predicting favored thermodynamic chemical reactions through which hydrogen can be reversibly stored and extracted.

The new method, published online in the peer-reviewed journal Advanced Materials, was developed by Alireza Akbarzadeh, a UCLA postdoctoral researcher in the department of materials science and engineering; Vidvuds Ozolins, UCLA associate professor of materials science and engineering; and Christopher Wolverton, professor of materials science and engineering at Northwestern University in Illinois.

Because of global environmental changes associated with man-made carbon dioxide emissions and the limited resources of fossil fuels, developing alternate and renewable energy sources is important for a sustainable future. Hydrogen is a potential source of clean energy for future use in passenger vehicles powered by cheap and energy-efficient fuel cells, but its widespread adoption has been hindered by the need to store it on-board at very high densities.

A promising solution to this problem involves storing hydrogen within a material in the form of a chemically bound hydride, for example lithium hydride (LiH). Unfortunately, simple binary hydrides, in which hydrogen combines with light elements such as lithium, sodium, magnesium or others, do not adequately satisfy the requirements for on-board storage, as the hydrogen-yielding reaction requires heating the material to impractically high temperatures.

Because of this, researchers have turned to multicomponent hydride mixtures with higher volumetric and gravimetric densities, better operating temperatures and improved reaction rates for practical hydrogen storage. However, this flexibility comes at the price of drastically increased complexity associated with the large number of competing reactions and possible end-products other than hydrogen. Thus, predicting desirable hydrogen storage with multicomponent mixtures has proved difficult. For example, the recently studied lithium hydride compound Li4BN3H10 was found to have as many as 17 hydrogen-release reactions, of which only three were found to be feasible — and none were in the desired range of temperatures and hydrogen pressures for practical on-board storage in hydrogen-powered vehicles.

The research team used modern quantum mechanical theories and high-powered computers to develop an algorithm that can automatically and systematically pinpoint phases and reactions that have the most favored thermodynamic properties — that is, those that can release hydrogen at ambient temperatures using the waste heat from a proton exchange membrane (PEM) fuel cell. The team tested the method on the well-studied Lithium-Magnesium-Nitrogen-Hydrogen system, predicting all experimentally observed pathways in the system. The researchers say this method can also be applied to other multicomponent hydrogen systems.

“The development of an algorithm that goes beyond chemical intuition and finds all hydrogen storage reactions ‘in silico’ is crucial and will help the scientific and engineering community to develop revolutionary new hydrogen-storage materials,” Akbarzadeh said. “This is a major achievement in the field, which can boost up the search for the best reversible solid-state hydrogen storage.”

“We are steadily approaching the moment when we will be able to theoretically design materials with desired properties, just like a tailor makes a suit to fit the customer’s needs,” Ozolins said. “This will bring in a qualitatively new era of collaboration between theory and computation, experiment and technology development.”

Source: University of California - Los Angeles

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

Aerogel catalyst shows promise for fuel cells

10 hours ago

(Phys.org)—Graphene nanoribbons formed into a three-dimensional aerogel and enhanced with boron and nitrogen are excellent catalysts for fuel cells, even in comparison to platinum, according to Rice University ...

Superatomic nickel core and unusual molecular reactivity

Feb 27, 2015

A superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems, that contain superatoms, open a number of amazing possibilities ...

The construction of ordered nanostructures from benzene

Feb 27, 2015

A way to link benzene rings together in a highly ordered three-dimensional helical structure using a straightforward polymerization procedure has been discovered by researchers from RIKEN Center for Sustainable ...

Researchers bring clean energy a step closer

Feb 27, 2015

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

Recommended for you

Why seashells' mineral forms differently in seawater

2 hours ago

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth's oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take ...

Giant virus revealed in 3-D using X-ray laser

2 hours ago

For the first time, researchers have produced a 3-D image revealing part of the inner structure of an intact, infectious virus, using a unique X-ray laser at the Department of Energy's SLAC National Accelerator ...

Magnetic vortices in nanodisks reveal information

3 hours ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Forschungszentrum Jülich (FZJ) together with a colleague at the French Centre National de la Recherche Scientifique (CNRS) in Strasbourg ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.