Argonne researcher studies what makes quantum dots blink

Oct 02, 2007
Argonne researcher studies what makes quantum dots blink
Matthew Pelton of Argonne’s Center for Nanoscale Materials adjusts a green laser used to monitor the sporadic blinking of quantum dots.

In order to learn more about the origins of quantum dot blinking, researchers from the U.S. Department of Energy's Argonne National Laboratory, the University of Chicago and the California Institute of Technology have developed a method to characterize it on faster time scales than have previously been accessed.

Nanocrystals of semiconductor material, also known as quantum dots, are being intensively investigated for applications such as light-emitting diodes, solid-state lighting, lasers, and solar cells. They are also already being applied as fluorescent labels for biological imaging, providing several advantages over the molecular dyes typically used, including a wider range of emitted colors and much greater stability.

Quantum dots have great promise as light-emitting materials, because the wavelength, or color, of light that the quantum dots give off can be very widely tuned simply by changing the size of the nanoparticles. If a single dot is observed under a microscope, it can be seen to randomly switch between bright and dark states. This flickering, or blinking, behavior has been widely studied, and it has been found that a single dot can blink off for times that can vary between microseconds and several minutes. The causes of the blinking, though, remain the subject of intense study.

The methods developed by Matt Pelton of Argonne's Center for Nanoscale Materials and his team of collaborators has revealed a previously unobserved change in the blinking behavior on time scales less than a few microseconds. This observation is consistent with the predictions of a model for quantum-dot blinking previously developed by Nobel Laureate Rudolph Marcus, contributor to this research, and his co-workers. In this model, the blinking is controlled by the random fluctuation of energy levels in the quantum dot relative to the energies of trap states on the surface of the nanocrystal or in the nearby environment.

The results of this research provide new insight into the mechanism of quantum-dot blinking, and should help in the development of methods to control and suppress blinking. Detailed results of this work have been published in a paper in the Proceedings of the National Academy of Sciences.

Source: Argonne National Laboratory

Explore further: 3-D images of tiny objects down to 25 nanometres

Related Stories

Researchers unravel the mystery of quantum dot blinking

Nov 09, 2011

(PhysOrg.com) -- Research by Los Alamos scientists published today in the journal Nature documents significant progress in understanding the phenomenon of quantum-dot blinking. Their findings should enhanc ...

Scientists Solve Problem of Quantum Dot 'Blinking'

Jan 23, 2008

Quantum dots—tiny, intense, tunable sources of colorful light—are illuminating new opportunities in biomedical research, cryptography and other fields. But these semiconductor nanocrystals also have a ...

Bright future for protein nanoprobes

Mar 18, 2014

(Phys.org) —The term a "brighter future" might be a cliché, but in the case of ultra-small probes for lighting up individual proteins, it is now most appropriate. Researchers at the U.S. Department of ...

Recommended for you

3-D images of tiny objects down to 25 nanometres

15 hours ago

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

Solving molybdenum disulfide's 'thin' problem

Mar 27, 2015

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

Snowflakes become square with a little help from graphene

Mar 25, 2015

The breakthrough findings, reported in the journal Nature, allow better understanding of the counterintuitive behaviour of water at the molecular scale and are important for development of more efficient techno ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.