First International Conference on Quantum Error Correction

Oct 01, 2007

Quantum error correction of decoherence and faulty control operations forms the backbone of all of quantum information processing. In spite of remarkable progress on this front ever since the discovery of quantum error correcting codes a decade ago, there remain important open problems in both theory and applications to real physical systems.

In short, a theory of quantum error correction that is at the same time comprehensive and realistically applicable has not yet been discovered. Therefore the subject remains a very active area of research with a continuing stream of progress and breakthroughs.

The First International Conference on Quantum Error Correction, hosted by the USC Center for Quantum Information Science & Technology (CQIST), will bring together a wide group of experts to discuss all aspects of decoherence control and fault tolerance. The subject is at this point in time of a mostly theoretical nature, but the conference will include talks surveying the latest experimental progress, and will seek to promote an interaction between theoreticians and experimentalists.

Topics of interest include, in random order: fault tolerance and thresholds, pulse control methods (dynamical decoupling), hybrid methods, applications to cryptography, decoherence-free subspaces and noiseless subsystems, operator quantum error correction, advanced codes (convolutional codes, catalytic, entanglement assisted, ...), topological codes, fault tolerance in the cluster model, fault tolerance in linear optics QC, fault tolerance in condensed matter systems, unification of error correction paradigms, self-correcting systems, error correction/avoidance via energy gaps, error correction in adiabatic QC, composite pulses, continuous-time QEC, error correction for specific errors (e.g., spontaneous emission), etc.

The conference will take place Dec. 17-21 at the University of Southern California in Los Angeles.

Source: University of Southern California

Explore further: Boron-based atomic clusters mimic rare-earth metals

Related Stories

What happens when a quantum dot looks in a mirror?

Mar 19, 2015

The 2014 chemistry Nobel Prize recognized important microscopy research that enabled greatly improved spatial resolution. This innovation, resulting in nanometer resolution, was made possible by making the ...

Physicists find a new form of quantum friction

Feb 26, 2015

Physicists at Yale University have observed a new form of quantum friction that could serve as a basis for robust information storage in quantum computers in the future. The researchers are building upon ...

Recommended for you

Boron-based atomic clusters mimic rare-earth metals

Apr 17, 2015

Rare Earth elements, found in the f-block of the periodic table, have particular magnetic and optical properties that make them valuable commodities. This has been particularly true over the last thirty years ...

Accurately counting ions from laboratory radiation exposure

Apr 15, 2015

Thermoluminescence is used extensively in archaeology and the earth sciences to date artifacts and rocks. When exposed to radiation, quartz emits light proportional to the energy it absorbs. Replicating the very low dose ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.